[1] Z. Taherian, M. Yousefpour, M. Tajally, B. Khoshandam, Promotional effect of samarium on the activity and stability of Ni-SBA-15 catalysts in dry reforming of methane, Microporous and Mesoporous Materials, 251, 9-18, (2017
[2] Z. Taherian, M. Yousefpour, M. Tajally, B. Khoshandam, A comparative study of ZrO2, Y2O3 and Sm2O3 promoted Ni/SBA-15 catalysts for evaluation of CO2/methane reforming performance. International Journal of Hydrogen Energy, 42(26), 6408-1642, (2017).
[3] Z. Taherian, M. Yousefpour, M. Tajally, B, Khoshandam, Catalytic performance of Samaria-promoted Ni and Co/SBA-15 catalysts for dry reforming of methane, International Journal of Hydrogen Energy, 42(39), 24811-24822, (2017).
112 Z.Taherian/ JHMTR 8 (2021) 105 - 113
[4] S. Das, M. Sengupta, J. Patel, A. Bordoloi, A study of the synergy between support surface properties and catalyst deactivation for CO2 reforming over supported Ni nanoparticles. Applied Catalysis A: General, 545, 113-126, (2017).
[5] T.S. Phan, A.R. Sane, B.R. Vasconcelos, A. Nzihou, P. Sharrock, D. Grouset, D. P. Minh, Hydroxyapatite supported bimetallic cobalt and Nickel catalysts for syngas production from dry reforming of methane. Applied Catalysis B: Environmental, 224, 310-321, (2018).
[6] E. Rbib, H.C. Bouallou, F. Werkoff, Production of synthetic gasoline and diesel fuel from dry reforming of methane, Energy Procedia, 29, 156-165, (2012).
[7] M. Sarkari, F. Fazlollahi, H. Atashi, A.A. Mirzaei, W.C. Hecker, Using different preparation methods to enhance Fischer-Tropsch products over iron-based catalyst, Chemical and biochemical engineering quarterly, 27(3), 259-266, (2013).
[8] S. Yasyerli, S. Filizgok, H. Arbag, N. Yasyerli, G. Dogu, Ru incorporated Ni–MCM-41 mesoporous catalysts for dry reforming of methane: Effects of Mg addition, feed composition and temperature, International Journal of Hydrogen Energy, 36(8), 4863-4874, (2011).
[9] N. El Hassan, M.N. Kaydouh, H. Geagea, H. Elein, K. Jabbour, S. Casale, H E. Zakhem, Pascale Massiani, Low temperature dry reforming of methane on rhodium and cobalt based catalysts: active phase stabilization by confinement in mesoporous SBA-15, Applied Catalysis A: General, 520, 114-121(2016).
[10] S. Damyanova, B. Pawelec, K.A. Arishtirova, J.L.G. Fierro, C. Sener, T. Dogu, MCM-41 supported PdNi catalysts for dry reforming of methane. Applied Catalysis B: Environmental, 92(3-4), 250-261, (2009)..
[11] M.G. Diéguez, E. Finocchio, M.Á. Larrubia, L.J. Alemany, G. Busca, Characterization of alumina-supported Pt, Ni and PtNi alloy catalysts for the dry reforming of methane, Journal of Catalysis, 2)74(1, 11-20, (2010).
[12] E. Steinhauer, M.R. Kasireddy, J. Radnik, A. Martin, Development of Ni-Pd bimetallic catalysts for the utilization of carbon dioxide and methane by dry reforming, Applied Catalysis A: General, 366(2), 333-341, (2009).
[13] W. Gac, W. Zawadzki, G. Słowik, A. Sienkiewicz, A. Kierys, Nickel catalysts supported on silica microspheres for CO2 methanation, Microporous and Mesoporous Materials, 272, 7-17, (2018)
[14] M.S. Lanre, A.S. Al-Fatesh, A.H. Fakeeh, S.O. Kasim, A.A. Ibrahim, A.S. Al-Awadi, A.A. Al-Zahrani, A.E. Abasaeed, Effects of preparation technique and lanthana doping on Ni/La2O3-ZrO2 catalysts for hydrogen production by CO2 reforming of coke oven gas. Catalysis Today, 318(15), 23-31, (2017).
[15] S.Wang, Y. Wang, C. Hu, The effect of NH3· H2O addition in Ni/SBA-15 catalyst preparation on its performance for carbon dioxide reforming of methane to produce H2, International Journal of Hydrogen Energy, 30(26), 13921-13930, (2018).
[16] B. Fidalgo, L. Zubizarreta, J,.M.B. Menendez, A. Arenillas, J.A. Menéndez, Synthesis of carbon-supported Nickel catalysts for the dry reforming of CH4, Fuel Processing Technology, 91(7), 765-769, (2010).
[17] J. Matos, K. Díaz, V. García, T.C. Cordero, J.L. Brito, Methane transformation in presence of carbon dioxide on activated carbon supported Nickel–calcium catalysts, Catalysis letters, 109(3), 163-169, (2006).
[18] K. Díaz, V. García, J. Matos, Activated carbon supported Ni–Ca: influence of reaction parameters on activity and stability of catalyst on methane reformation, Fuel, 86(9), 1337-1344, (2007).
[19] M.C.Bradford, M.A. Vannice, Catalytic reforming of methane with carbon dioxide over Nickel catalysts I. Catalyst characterization and activity, Applied Catalysis A: General, 142(1), 73-96, (1996).
[20] B. Fidalgo, J.Á. Menendez, Carbon materials as catalysts for decomposition and CO2 reforming of methane: a review, Chinese journal of catalysis, 32(1-2), 207-216, (2011).
[21] A. Dandekar, R. Baker, M. Vannice, Carbon-supported copper catalysts: I. Characterization, Journal of Catalysis, 183(1), 131-154, (1999).
[22] N.B. Klinghoffer, M.J. Castaldi, A. Nzihou, Catalyst properties and catalytic performance of char from biomass gasification, Industrial & Engineering Chemistry Research, 51(40), 13113-13122, (2012).
[23] V.L. Budarin, J.H. Clark, S.J. Tavener, K. Wilson, Chemical reactions of double bonds in activated carbon: microwave and bromination methods, Chemical Communications, 23, 2736-2737, (2004).
[24] L. Xu, Y. Liu, Y. Li, M. Fan, Catalytic CH4 reforming with CO2 over activated carbon based catalysts. Applied Catalysis A: General, 469, 387-397, (2014).
[25] Y. Shen, A.C. Lu, A trimodal porous carbon as an effective catalyst for hydrogen
Z.Taherian / JHMTR 8 (2021) 105 - 113 113
production by methane decomposition, Journal of colloid and interface science, 462, 48-55, (2016).
[26] F. Rodriguez-Rein oso, The role of carbon materials in heterogeneous catalysis. Carbon, 36(3), 159-175, (1998). 27. F. Stüber, J. Font, A. Fortuny, C. Bengoa, A. Eftaxias, A. Fabregat, Carbon materials and catalytic wet air oxidation of organic pollutants in wastewater, Topics in Catalysis, 33(1-4), 3-50, (2005).
[28] J. Goscianska, R. Pietrzak, J. Matos, Catalytic performance of ordered mesoporous carbons modified with lanthanides in dry methane reforming, Catalysis Today, 301, 204-216, (2018).
[29] D. Zhao, J. Sun¸ Q. Li, G.D. Stucky, Morphological control of highly ordered mesoporous silica SBA-15. Chemistry of Materials, 12(2), 275-279, (2000).
[30] S. Jun, S.H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z.H. Liu, T. Ohsuna, O. Terasaki, Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. Journal of the American Chemical Society, 122(43), 10712-10713, (2000).
[31] M.I. Clerc, D. Bazin, M.D. Appay, P. Beaunier,
A. Davidson, Crystallization of β-MnO2 nanowires in the pores of SBA-15 silicas: in
situ investigation using synchrotron radiation, Chemistry of materials, 16(9), 1813-1821, (2004).
[32] M.N.Kaydouh, N.E. Hassan, A. Davidson, S.Casale, H.E. Zakhem, P. Massian, Highly active and stable Ni/SBA-15 catalysts prepared by a “two solvents” method for dry reforming of methane, Microporous and Mesoporous Materials, 220, 99-109, (2016).
[33] J.F. Li, C. Xia, C.T. Au, B.S. Liu, Y2O3-promoted NiO/SBA-15 catalysts highly active for CO2/CH4 reforming, International Journal of Hydrogen Energy, 39(21), 10927-10940. (2014).
[34] M.A. Azizi Ganzaghi, M. Yousefpour, Z, Taherian, The removal of mercury (II) from water by Ag supported on nanomesoporous silica, Journal of chemical biology, 9(4), 127-142, (2016).
[35] V. Shanmugam, R. Zapf, S. Neuberg, V. Hessel, G. Kolb, Effect of ceria and zirconia promotors on Ni/SBA-15 catalysts for coking and sintering resistant steam reforming of propylene glycol in microreactors. Applied Catalysis B: Environmental, 203, 859-869.