A comparison of catalyst behavior of Samaria Modified Ni Catalyst Supported on Mesoporous Silica and Carbon for Methane CO2 Reforming

Document Type : Full Lenght Research Article

Authors

1 Faculty of Material and Metallurgical Engineering, Semnan university, Semnan, Iran

2 Faculty of Material and Metallurgical Engineering, Semnan university,Semnan, Iran

3 Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan, Iran

Abstract

The Samaria-promoted of 10wt% Nickel-CMK-3 and 10wt% Nickel-SBA-15 were synthesized by the Samarium (3wt %) addition, and using the two-solvent impregnation technique. The N2 adsorption-desorption, field emission scanning electron microscopy, energy dispersive x-ray analysis, x-ray diffraction and the transmission electron microscopy analysis were used to characterize of the Samaria modified and unmodified catalysts. Furthermore, the catalyst performances were tested under the carbon dioxide reforming of methane. As a result, the x-ray diffraction and surface area investigation revealed that the addition of Samaria (Sm2O3) into the Nickel (Ni) catalysts/silica (SBA-15) and carbon (CMK-3) mesostructures decreased the particles size and surface area according to the TEM micrographs; however, mproved the catalysts activity and catalysts stability. The role of investigation of support in the dry reforming reaction indicated that the activity and catalysts stability of the Ni/CMK-3 catalysts were lower than the Ni/SBA-15 catalysts due to the agglomeration of Ni nanoparticles on the CMK-3 support, the sintering of Ni nanoparticles, the burning of the mesoporous carbon support in the higher temperatures and the blocking of Ni nanoparticles into the deposited carbon nanotubes (CNTs).

Keywords

Main Subjects