Simultaneous Separation/Trapping and Dual Trapping of Microparticles in a Novel Microchip using Dielectrophoresis

Document Type : Full Lenght Research Article

Authors

1 Head of Visualization and Tracking Laboratory (fvt.shahroodut.ac.ir), Shahrood University of Technology, Shahrood, Iran

2 Faculty of Mechanical Engineering, Shahrood University of Technology, Shahrood, Iran.

Abstract

Particle manipulation using Dielectrophoretic (DEP) force is widely used in microfluidic systems. Because this force is highly sensitive to the electrical properties of particles and the medium as well as the frequency of the electric field. Therefore, regarding the electrical properties of particles and the medium, the attractive and repulsive DEP forces can be created by adjusting the electric field frequency. In this numerical study, two electric fields with different frequencies are employed for simultaneous separating/trapping of particles and dual trapping of particles by taking advantage of the DEP force. At first, by proposing a single-chamber microchannel, the effects of frequency and voltage are investigated for trapping the 5µm Polystyrene particles within the microchannel chamber and for separating and ejecting the 2µm polystyrene particles from the microchannel. At this stage, the optimum voltages are obtained for trapping the 5µm particles and ejecting the 2µm particles according to the obtained performance diagrams. Then, another chamber is added to the microchannel for dual trapping of polystyrene particles. By utilizing the optimum voltages, the particles with different sizes are trapped in different chambers of microchannel. In this section, the performance cartography of the proposed system is also evaluated for the first time to select the optimum values and smart separation. In all numerical simulations, two electric fields with different frequencies are used, one electric field absorbs the particles and the other field repels the particles.

Keywords

Main Subjects


[1]   B.H. Weigle, R.L. Bardell, C.R. Cabrera, Lan-on-a-chip for drug development. Advanced Drug Delivery Reviews, 55(3), 349-377(2003)
[2]   R. Langer, J.P. Vacanti, tissue engineering. Science, 260(5110), 920-926(1993)
[3]   X.J. Feng, W. Du, Q.M. Luo, B.F. Liu, Microfluidic chip: next-generation platform for systems biology. Analytica Chimica Acta, 650(1),83-97(2009)
[4]   K. Khoshmanesh, N. Kiss, S. Nahavandi, C.W. Evans, J.M. Cooper, D.E. Williams, D. Wlodkowic, Trapping and imaging of micron-sized embryos using dielectrophoresis. Electrophoresis, 32(22), 3129-3132(2011)
[5]   G.J. Cheng, D. Pirzada, P. Dutta, Design and fabrication of a hybrid nanofluidic channel. J.Microlith. Microfab. Microsyst., 4(1), 013009(2005)
[6]   S. Azimi, M. Nazari, Y. Daghighi, Developing a fast and tunable micro-mixer using induced vortices around a conductive flexible link. Physics of Fluids, 20(3), 032004(2017)
[7]   S. Azimi, M. Nazari, Y. Daghighi, Fluid physics around conductive deformable flaps within an induced-charge electrokinetically driven microsystem. Microfluidics and Nanofluidics, 20(9), 124(2016).
[8]   W. Waheed, A. Alazzam, B. Mathew, N. Christoforou, E. Abu-Nada, Lateral fluid flow fractionation using dielectrophoresis (LFFF-DEP) for size independent, label free isolation of circulating tumor cells. J. Chromatogr. B, 1087-1088, 133-137(2018).
[9] W. Norde, Colloids and interfaces in life science, second ed. Marcel Dekker, Monticello, NY, (2003).
[10] K.H. Kang, X.C. Xuan, Y.J. Kang, D.Q. Li, Effects of dc-dielectrophoretic force on particle trajectories in microchannels. Journal of Applied Physics, 99(6), 064702(2006)
[11] H.A. Pohl, Dielectrophoresis: the behavior of neutral matter in nonuniform electric fields, Cambridge University Press, Cambridge, New York, (1978).
[12] K. Zhao, L. Larasati, B.P. Duncker, D. Li, Continuous Cell Characterization and Separation by Microfluidic AC Dielectrophoresis. Anal Chem, 91(9), 6304-6314(2019).
[13] H.H. Cui, J. Voldman, X.F. He, K.M. Lim, Separation of particles by pulsed dielectrophoresis. Lab Chip, 9(16), 2306-2312(2009).
[14] T. Ye, H. Li, and K.Y. Lam, Two-dimensional numerical modeling for separation of deformable cells using dielectrophoresis. Electrophoresis, 36(3), 378-385(2015)
[15] C.M. Yousuff, N.H. Hamid, I. Hussain, E.T.W. Ho, Numerical Modelling and Simulation of Dielectrophoretic based WBC Sorting using Sidewall Electrode, 2016 6th International Conference on Intelligent and Advanced Systems (ICIAS), Kuala Lumpur, Malaysia, IEEE, pp. 1-5(2016)
[16] N. Piacentini, G. Mernier, R. Tornay, P. Renaud, Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation. Biomicrofluidic, 5(3), 1-8(2011)
[17] J. Zhang, D. Yuan, Q. Zhao, S. Yan, S.Y. Tang, S.H. Tan, J. Guo, H. Xia, N.T. Nguyen, W. Li, Tunable particle separation in a hybrid dielectrophoresis (DEP)- inertial microfluidic device. Sensors and Actuators B: Chemical, 267, 14-25(2018)
[18] M. Hajari, A. Ebadi, M.J. Heydari, M. Fathipour, M. Soltani, Dielectrophoresis-based microfluidic platform to sort micro-particles in continuous flow. Microsyst. Technol., 26, 751-763(2020)
 [19] J. Voldman, R. Braff, M. Toner, M. Gray, M. Schmidt, Holding forces of single-particle dielectrophoretic traps. Biophysical Journal, 80(1), 531-541(2001)
[20] D.V. Le, C. Rosales, B.C. Khoo, J. Peraire, Numerical design of electrical-mechanical traps. Lab Chip, 8(5), 755-763(2008)
[21] T. Zhou, J. Ge, L. Shi, J. Fan, Z. Liu, S. Woo, Dielectrophoretic choking phenomenon of a deformable particle in a converging-diverging microchannel. Electrophoresis, 39(4), 590-596(2017)
[22] V.H Perez-Gonzalez, R.C. Gallo-Villanueva, B. Cardenas- Benitez, S.O. Martinez-Chapa, B.H. Lapizco-Encinas, A simple approach to reducing particle trapping voltage in insulator-based dielectrophoretic systems. Anal Chem, 90(7), 4310-4315(2018).
[23] N. Demierre, T. Braschler, R. Muller, P. Renaud, Focusing and continuous separation of cells in a microfluidic device using lateral dielectrophoresis. Sensors and Actuators B: Chemical, 132(2), 388-396(2008)
[24] M. Urdaneta, E. Smela, Parasitic trap cancellation using multiple frequency dielectrophoresis, demonstrated by loading cells into cages. Lab Chip, 8(4), 550-556(2008)
[25] B. Cetin, S.D. Oner, B. Baranoglu, Modeling of dielectrophoretic particle motion: Point particle versus finite-sized particle. Electrophoresis, 38(11), 1407-1418(2017)
[26] F.M. White, Fluid mechanic, McGraw-Hill Education, Boston, (2008).
[27] K.V.I.S. Kaler, J.P. Xie, T. Jones, R. Paul, Dual-frequency dielectrophoretic levitation of Canola protoplasts. Biophysical Journal, 63(1), 58-69(1992)
[28] A. Castellanos, A. Ramos, A. Gonzalez, N.G. Green, H. Morgan, Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws. Journal of Physics D Applied Physics, 36(20), 2584-2597(2003)
[29] S.H. Beak, W.J. Chang, J.Y. Beak, D.S. Yoon, R. Bashir, S.W. Lee, Dielectrophoretic Technique for Measurement of Chemical and Biological Interactions. Analytical Chemistry, 81(18), 7737-7742(2009)
[30] G.H. Markx, R. Pethig, J. Rousselet, The dielectrophoretic levitation of latex beads, with reference to field-flow fractionation. Journal of Physics D: Applied Physics, 30(17), 2470-2477(1997).