[1] Aly, W. I. A., 2014. Numerical study on turbulent heat transfer and pressure drop of nanofluid in coiled tube-in-tube heat exchangers. Energy Conversion and Managemen, Elsevier Ltd, 79, pp. 304–316. doi: 10.1016/j.enconman.2013.12.031.
[2] Rao, R. V., Rai, D. P. and Balic, J., 2017. A multi-objective algorithm for optimization of modern machining processes. Engineering Applications of Artificial Intelligence. Elsevier Ltd, 61(March), pp. 103–125. doi: 10.1016/j.engappai.2017.03.001.
[3] Arsana, I. M. and Rahardjo, M. A. H., 2020. Simulation study on efficiency of woven matrix wire and tube heat exchanger. International Journal of Engineering Transactions C: Aspects, 33(12), pp. 2572–2577. doi: 10.5829/ije.2020.33.12c.19.
[4] Atapattu, S., Tellambura, C. and Jiang, H., 2014, Performance measurements. SpringerBriefs in Computer Science, 0(9781493904938), pp. 41–62. doi: 10.1007/978-1-4939-0494-5_4.
[5] Balamurugan, S. and Samsoloman, D. P., 2014. Experiment. 00(2013), pp. 59–66.
[6] Baniamerian, Z., Mehdipour, R. and Murshed, S. M. S., 2019. An experimental investigation of heat of vaporization of nanofluids. Journal of Thermal Analysis and Calorimetry, doi: 10.1007/s10973-019-08202-y.
[7] Bock Choon Pak, Y. I. C., 2013. Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide. Experimental Heat Transfer : A Journal of Thermal Energy Transport, Storage, and Conversion, January 2013, pp. 37–41.
[8] Borzuei, M. and Baniamerian, Z., 2020. Role of nanoparticles on critical heat flux in convective boiling of nanofluids: Nanoparticle sedimentation and Brownian motion. International Journal of Heat and Mass Transfer, Elsevier Ltd, 150, p. 119299. doi:10.1016/j.ijheatmasstransfer.2019.119299.
[9] Dalkılıç, A. S. et al., 2020. Optimization of the finned double-pipe heat exchanger using nanofluids as working fluids. Journal of Thermal Analysis and Calorimetry, Springer International Publishing, 5(0123456789). doi: 10.1007/s10973-020-09290-x.
[10] Ghorbani, M. and Ranjbar, S. F., 2019. Optimization of compressed heat exchanger efficiency by using genetic algorithm. International Journal of Applied Mechanics and Engineering, 24(2), pp. 461–472. doi: 10.2478/ijame-2019-0029.
[11] GUTHRIE KM., 1969. Capital Cost Estimating. Chemical Engineer, doi: 10.1021/ie50502a032.
[12] Hajabdollahi, Z., Hajabdollahi, H. and Kim, K. C., 2020. Heat transfer enhancement and optimization of a tube fitted with twisted tape in a fin-and-tube heat exchanger. Journal of Thermal Analysis and Calorimetry, Springer International Publishing, 140(3), pp. 1015–1027. doi: 10.1007/s10973-019-08668-w.
[13] Hanson, F. V., 1989. Heat exchangers selection, design and construction. Fuel Processing Technology, pp. 87–88. doi: 10.1016/0378-3820(89)90046-5.
[14] Hoghoj, L. C. et al., 2020. Topology optimization of two fluid heat exchangers. International Journal of Heat and Mass Transfer, 163(July). doi: 10.1016/j.ijheatmasstransfer.2020.120543.
[15] Hojjati, A. et al., 2018. Application and comparison of NSGA-II and MOPSO in multi-objective optimization of water resources systems. Journal of Hydrology and Hydromechanics, 66(3), pp. 323–329. doi: 10.2478/johh-2018-0006.
[16] Jeklin, A., 2016. 済無 No Title, vol, 1, pp.1-23.
[17] John, A. K. and Krishnakumar, K., 2017. Performing multiobjective optimization on perforated plate matrix heat exchanger surfaces using genetic algorithm. International Journal for Simulation and Multidisciplinary Design Optimization, 8, pp. 0–7. doi: 10.1051/smdo/2016011.
[18] Khanmohammadi, Shoaib et al., 2020. Triple-objective optimization of a double-tube heat exchanger with elliptic cross section in the presence TiO2 nanofluid. Journal of Thermal Analysis and Calorimetry, Springer International Publishing, 140(1), pp. 477–488. doi: 10.1007/s10973-019-08744-1.
[19] Khoshvaght-Aliabadi, M., 2014. Influence of different design parameters and Al2O3-water nanofluid flow on heat transfer and flow characteristics of sinusoidal-corrugated channels. Energy Conversion and Management, Elsevier Ltd, 88, pp. 96–105. doi: 10.1016/j.enconman.2014.08.042.
[20] Maïga, S. E. B. et al., 2006. Heat transfer enhancement in turbulent tube flow using Al2O 3 nanoparticle suspension. International Journal of Numerical Methods for Heat and Fluid Flow, 16(3), pp. 275–292. doi: 10.1108/09615530610649717.
[21] Memari, A., Rahim, A. R. A. and Ahmad, R. B., 2015, An integrated production-distribution planning in green supply chain: A multi-objective evolutionary approach. Procedia CIRP, Elsevier B.V., 26(September 2014), pp. 700–705. doi:10.1016/j.procir.2015.03.006.
[22] McDonald, A. G. and Magande, H. L., 2012. Fundamentals of Heat Exchanger Design. Introduction to Thermo-Fluids Systems Design, pp. 127–211. doi: 10.1002/9781118403198.ch4.
[23] Miansari, M. et al., 2020. Energy and exergy analysis and optimization of helically grooved shell and tube heat exchangers by using Taguchi experimental design. Journal of Thermal Analysis and Calorimetry, Springer International Publishing, 139(5), pp. 3151–3164. doi: 10.1007/s10973-019-08653-3.
[24] Najafi, H. and Najafi, B., 2010. Multi-objective optimization of a plate and frame heat exchanger via genetic algorithm. Heat and Mass Transfer/Waerme- und Stoffuebertragung, 46(6), pp. 639–647. doi: 10.1007/s00231-010-0612-8.
[25] Rao, R. V., Rai, D. P. and Balic, J., 2017. A multi-objective algorithm for optimization of modern machining processes. Engineering Applications of Artificial Intelligence, Elsevier Ltd, 61(March), pp. 103–125. doi: 10.1016/j.engappai.2017.03.001.
[26] Rohsenow Editor, W. M. et al., 1998. HANDBOOK OF HEAT TRANSFER MCGRAW-HILL Chapter 1. Basic Concepts of Heat Transfer 1.1 The Equation of Motion (Momentum Equation) / Chapter 2. Thermophysical Properties 2.1’, Handbook of Heat Transfer.
[27] Sadeghzadeh, H., Aliehyaei, M. and Rosen, M. A., 2015, Optimization of a finned shell and tube heat exchanger using a multi-objective optimization genetic algorithm. Sustainability (Switzerland), 7(9), pp. 11679–11695. doi: 10.3390/su70911679.
[28] Sadeghzadeh, H., Ehyaei, M. A. and Rosen, M. A., 2015. Techno-economic optimization of a shell and tube heat exchanger by genetic and particle swarm algorithms. Energy Conversion and Management. Elsevier Ltd, 93, pp. 84–91. doi: 10.1016/j.enconman.2015.01.007.
[29] Shoheib, M. M., Hamzehei, M. and Shahrooi, S., 2019. Investigating tubes material selection on thermal stress in shell side inlet zone of a vertical shell and tube heat exchanger. Journal of Heat and Mass Transfer Research, 6(2), pp. 21–30. doi: 10.22075/jhmtr.2018.14041.1203.
[30] Sieder, E. N. and Tate, G. E., 1936. Heat Transfer and Pressure Drop of Liquids in Tubes. Industrial and Engineering Chemistry, 28(12), pp. 1429–1435. doi: 10.1021/ie50324a027.
[31] Taal, M. et al., 2003. Cost estimation and energy price forecasts for economic evaluation of retrofit projects. Applied Thermal Engineering, 23(14), pp. 1819–1835. doi: 10.1016/S1359-4311(03)00136-4.
[32] Taghilou, M., Ghadimi, B. and Seyyedvalilu, M. H., 2014. Optimization of Double Pipe Fin-pin Heat Exchanger using Entropy Generation Minimization. International Journal of Engineering, 27(9 (C)), pp. 1431–1438. doi: 10.5829/idosi.ije.2014.27.09c.13.
[33] Turgut, O. E., 2017. Multi-objective thermal design optimization of plate frame heat exchangers through Global Best Algorithm. Bitlis Eren University, Journal of Science and Technology, 7(1), pp. 33–33. doi: 10.17678/beuscitech.322141.
[34] Uddin, M. J., Rahman, M. M. and Alam, S., 2016. Fundamentals of Nanofluids : Evolution , Applications and New Theory. International Journal of Biomathematics and Systems Biology, 2(1), pp. 1–31.
[35] Valipour, M. S., Biglari, M. and Assareh, E., 2016. Thermal-Economic Optimization of Shell and Tube Heat Exchanger by using a new Multi-Objective optimization method. Journal of Heat and Mass Transfer Research (JHMTR), 3(1), pp. 67–76.
[36] Zhao, L., Huo, Z. and Yin, H., 2013. Heat exchanger network optimization considering pressure drop constraints based on minimum operating cost. International Journal of Online Engineering, 9 (SPECIALISSUE.6), pp. 33–37. doi: 10.3991/ijoe.v9iS6.2798.