[1] Ferreira, J.C.A. and Barbosa, J.R., 2020. Quantifying interfacial parameters of upward and downward annular flow condensation from high-speed visualization, J Braz. Soc. Mech. Sci. Eng., 42(158).
[2] Li, B., Feng, L., Wang, L. and Dai, Y., 2021. Experimental investigation of condensation heat transfer and pressure drop of R152a/R1234ze(E) in a smooth horizontal tube, Heat Transfer Research, 52 (7), pp.35-54.
[3] Ko, J.W., Jeon, D.S. and Kim, Y.L., 2018. Experimental study on film condensation heat transfer characteristics of R1234ze(E) and R1233zd(E) over horizontal plain tubes, J Mech Sci Technol., 32, pp.527–534.
[4] Rao, Y., Li, H., Shen, S., Yang, Q., Zhang, G., Zhang, X., Li, M. and Duan, S., 2017. Water vapor condensation on the inner surface of an N95 filtering facepiece respirator, Heat Transfer Research, 50(3), pp.217-231.
[5] Farahani, S.D. and Karami, M., 2019. Experimental estimation of local heat flux on boiling surface in a mini-channel, Int. J. Communications in Heat and Mass Transfer. 108, 104271.
[6] Farahani, S.D. and Kowsary, F., 2012. Estimation local convective boiling heat transfer coefficient in mini channel, Int. J. Communications in Heat and Mass Transfer, 39(2), pp.304-310.
[7] Karami, M., Davoodabadi Farahani, S., Kowsary, F. and Mosavi, A. 2020. Experimental estimation of temporal and spatial resolution of coefficient of heat transfer in a channel using inverse heat transfer method, Engineering Applications of Computational Fluid Mechanics, 14(1), pp.271-283.
[8] Davar, H., Nouri, N.M. and Navidbakhsh, M., 2021. Enhancement of condensation heat transfer at aluminum surfaces via laser-induced surface roughening, J Braz. Soc. Mech. Sci. Eng., 43(346).
[9] Schmidt, E., Schurig, W. and Sellschopp, W., 1930. Condensation of water vapour in film-and drop form, Zeitschrift Des Vereines Deutscher Ingenieure, 74, pp.544-544.
[10] Citakoglu, E., and Rose, J.W., 1968. Dropwise condensation-some factors influencing the validity of heat-transfer measurements, Int. J. Heat Mass Transf., 11(3), pp.523-537.
[11] Izumi, M., Kumagai, S., Shimada, R., and Yamakawa, N., 2004. Heat transfer enhancement of dropwise condensation on a vertical surface with round shaped grooves, Exp. Therm. Fluid Sci., 49(2), pp.243-248.
[12] Koch, G., Zhang, D.C., and Leipertz, A., 1997. Condensation of steam on the surface of hard coated copper discs, Heat and Mass Transfer., 32(22), pp.149-156.
[13] Majumdar, A., and Mezic, I., 1999. Instability of ultra-thin water films and the mechanism of droplet formation on hydrophilic surfaces,” J. Heat Mass Transf., 121(4), pp.964-971.
[14] Vemuri, S., and Kim, K.J., 2006. An experimental and theoretical study on the concept of dropwise condensation, Int. J. Heat Mass Transf., 49(3), pp.649-657.
[15] Tianqing, L., Chunfeng, M. Xiangyu, S. and Songbai, X., 2007. Mechanism study on formation of initial condensate droplets, The American Institute of Chemical Engineers Journal, 53(4), pp.1050–1055.
[16] Ma, X.-H., Zhou, X.-D., Lan, Z., Yi-Ming, L.I., and Zhang, Y., 2008. Condensation heat transfer enhancement in the presence of non-condensable gas using the interfacial effect of dropwise condensation, Int. J. Heat Mass Transf., 51(7), pp.1728-1737.
[17] Boreyko, J.B., and Chen, C.-H., 2009. Self-propelled dropwise condensate on superhydrophobic surfaces, Phys. Rev. Lett., 103(18), 184501.
[18] Talesh Bahrami, H.R., Azizi, A. and Saffari, H., 2020. An Empirical Study on Dropwise Condensation Occurred on Surfaces Hydrophobized Using a Single-Step Electrodeposition, Amirkabir Journal of Mechanical Engineering, 52(6), pp.1397-1412.
[19] Ghosh, A., Beaini, S., Zhang, B.J., Ganguly, R., and Megaridis, C.M., 2014. Enhancing Dropwise Condensation through Bioinspired Wettability Patterning, Langmuir, 30, pp.13103-13115.
[20] Peng, B., Ma, X., Lan, Z., Xu, W., and Wen, R., 2015. Experimental investigation on steam condensation heat transfer enhancement with vertically patterned hydrophobic–hydrophilic hybrid surfaces, Int. J. Heat Mass Tran., 83(4), pp.27-38.
[21] Peng, B., Ma, X., Lan, Z., Xu, W., and Wen, R., 2014. Analysis of condensation heat transfer enhancement with dropwise-filmwise hybrid surface: Droplet sizes effect, Int. J. Heat Mass Trans., 77, pp.785–794.
[22] Ji, X., Zhou, D., Dai, C., and Xu, J., 2019. Dropwise condensation heat transfer on superhydrophilic-hydrophobic network hybrid surface, Int. J. Heat Mass Trans., 132, pp.52-67.
[23] Oestreich, J.L., van der Geld, C.W.M., Oliveira, J.L.G. and da Silva, A.K., 2019. Experimental condensation study of vertical superhydrophobic surfaces assisted by hydrophilic constructal-like patterns, International Journal of Thermal Sciences, 135, pp.319–330.
[24] Derby, M.M. Chatterjee, A., Peles, Y. and Jensen, M.K., 2014. Flow condensation heat transfer enhancement in a mini-channel with hydrophobic and hydrophilic patterns, Int. J. Heat Mass Trans., 68, pp.151–160.
[25] Chatterjee, A., Derby, M.M. Peles, Y. and Jensen, M.K., 2013. Condensation heat transfer on patterned surfaces, Int. J. Heat Mass Trans., 66, pp.889–897.
[26] Chatterjee, A., Derby, M.M., Peles, Y., and Jensen, M.K., 2014. Enhancement of condensation heat transfer with patterned surfaces, Int. J. Heat Mass Trans., 71, pp.675– 681.
[27] Davar, H., Nouri, N.M. and Navidbakhsh, M., 2021. Effects of Superhydrophobic, Hydrophobic and Hybrid Surfaces in Condensation Heat Transfer, Journal of Applied Fluid Mechanics, 14(4), pp.1077-1090.
[28] Davar, H., Nouri, N.M., Navidbakhsh, M., Sekhavat, S. and Ansari, A., 2021. Enhancement of dropwise condensation heat transfer on hydrophilic-hydrophobic hybrid surface using microparticles, Experimental Heat Transfer, 35(4), pp.535-552.
[29] ISO Guide to the Expression of Uncertainty in Measurement, 1995.
[30] Lemmon, E.W., Huber, M.L., and McLinden, M.O., 2013. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1.
[31] Bergman, T.L., Lavine, A.S., Incropera, F.P. and Dewitt, D.P., 2011. Fundamentals of Heat and Mass Transfer.