[1] Modjinou, M., Ji, J., Yuan, W., Zhou, F., Holliday, S., Waqas, A. and Zhao, X., 2019. Performance comparison of encapsulated PCM PV/T, microchannel heat pipe PV/T and conventional PV/T systems. Energy, 166, pp.1249-1266.
[2] Deng, D., Xie, Y., Chen, L., Pi, G. and Huang, Y., 2019. Experimental investigation on thermal and combustion performance of a combustor with microchannel cooling. Energy, 181, pp.954-963.
[3] Osanloo, B., Mohammadi-Ahmar, A., Solati, A. and Baghani, M., 2016. Performance enhancement of the double-layered micro-channel heat sink by use of tapered channels. Applied Thermal Engineering, 102, pp.1345-1354.
[4] Bejan, A., 2013. Convection heat transfer. John wiley & sons.
[5] Li, J., Peterson, G.P. and Cheng, P., 2004. Three-dimensional analysis of heat transfer in a micro-heat sink with single phase flow. International Journal of Heat and Mass Transfer, 47(19-20), pp.4215-4231.
[6] Gamrat, G., Favre-Marinet, M. and Asendrych, D., 2005. Conduction and entrance effects on laminar liquid flow and heat transfer in rectangular microchannels. International Journal of Heat and Mass Transfer, 48(14), pp.2943-2954.
[7] Akar, S., Rashidi, S., Esfahani, J.A. and Karimi, N., 2019. Targeting a channel coating by using magnetic field and magnetic nanofluids. Journal of Thermal Analysis and Calorimetry, 137(2), pp.381-388.
[8] Akbarzadeh, M., Rashidi, S., Karimi, N. and Ellahi, R., 2018. Convection of heat and thermodynamic irreversibilities in two-phase, turbulent nanofluid flows in solar heaters by corrugated absorber plates. Advanced Powder Technology, 29(9), pp.2243-2254.
[9] Rashidi, S., Karimi, N., Sunden, B., Mahian, O. and Harmand, S., 2020. Passive techniques to enhance heat transfer in various thermal systems. Journal of Thermal Analysis and Calorimetry, 140(3), pp.875-878.
[10] Koo, J. and Kleinstreuer, C., 2005. Laminar nanofluid flow in microheat-sinks. International journal of heat and mass transfer, 48(13), pp.2652-2661.
[11] Jang, S.P. and Choi, S.U., 2006. Cooling performance of a microchannel heat sink with nanofluids. Applied Thermal Engineering, 26(17-18), pp.2457-2463.
[12] Wen, D. and Ding, Y., 2004. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. International journal of heat and mass transfer, 47(24), pp.5181-5188.
[13] Fornalik-Wajs, E., Roszko, A. and Donizak, J., 2020. Nanofluid flow driven by thermal and magnetic forces–Experimental and numerical studies. Energy, 201, p.117658.
[14] Hung, T.C., Sheu, T.S. and Yan, W.M., 2012. Optimal thermal design of microchannel heat sinks with different geometric configurations. International communications in heat and mass transfer, 39(10), pp.1572-1577.
[15] He, Y., Men, Y., Zhao, Y., Lu, H. and Ding, Y., 2009. Numerical investigation into the convective heat transfer of TiO2 nanofluids flowing through a straight tube under the laminar flow conditions. Applied Thermal Engineering, 29(10), pp.1965-1972.
[16] Mirzaei, M. and Dehghan, M., 2013. Investigation of flow and heat transfer of nanofluid in microchannel with variable property approach. Heat and Mass Transfer, 49(12), pp.1803-1811.
[17] Chein, R. and Huang, G., 2005. Analysis of microchannel heat sink performance using nanofluids. Applied thermal engineering, 25(17-18), pp.3104-3114.
[18] Peng, H., Guo, W. and Li, M., 2020. Thermal-hydraulic and thermodynamic performances of liquid metal based nanofluid in parabolic trough solar receiver tube. Energy, 192, p.116564.
[19] Wang, Y., Li, Q. and Xuan, Y., 2019. Thermal and chemical reaction performance analyses of solar thermochemical volumetric receiver/reactor with nanofluid. Energy, 189, p.116123.
[20] Huaxu, L., Fuqiang, W., Dong, L., Jie, Z. and Jianyu, T., 2019. Optical properties and transmittances of ZnO-containing nanofluids in spectral splitting photovoltaic/thermal systems. International Journal of Heat and Mass Transfer, 128, pp.668-678.
[21] Huaxu, L., Fuqiang, W., Dong, Z., Ziming, C., Chuanxin, Z., Bo, L. and Huijin, X., 2020. Experimental investigation of cost-effective ZnO nanofluid based spectral splitting CPV/T system. Energy, 194, p.116913.
[22] Aminfar, H., Mohammadpourfard, M. and Kahnamouei, Y.N., 2011. A 3D numerical simulation of mixed convection of a magnetic nanofluid in the presence of non-uniform magnetic field in a vertical tube using two phase mixture model. Journal of Magnetism and Magnetic Materials, 323(15), pp.1963-1972.
[23] Wrobel, W., Fornalik-Wajs, E. and Szmyd, J.S., 2010. Experimental and numerical analysis of thermo-magnetic convection in a vertical annular enclosure. International Journal of Heat and Fluid Flow, 31(6), pp.1019-1031.
[24] Sawada, T., Tanahashi, T. and Ando, T., 1987. Two-dimensional flow of magnetic fluid between two parallel plates. Journal of Magnetism and Magnetic Materials, 65(2-3), pp.327-329.
[25] Selimli, S., Recebli, Z. and Arcaklioglu, E., 2015. MHD numerical analyses of hydrodynamically developing laminar liquid lithium duct flow. International Journal of Hydrogen Energy, 40(44), pp.15358-15364.
[26] Zhao, M. and Hu, J., 2012, December. Study on density of magnetic fluid in the strong magnetic field. In 2012 Second International Conference on Instrumentation, Measurement, Computer, Communication and Control (pp. 396-398). IEEE.
[27] Hajialigol, N., Fattahi, A., Ahmadi, M.H., Qomi, M.E. and Kakoli, E., 2015. MHD mixed convection and entropy generation in a 3-D microchannel using Al2O3–water nanofluid. Journal of the Taiwan Institute of Chemical Engineers, 46, pp.30-42.
[28] Aminfar, H., Mohammadpourfard, M. and Zonouzi, S.A., 2013. Numerical study of the ferrofluid flow and heat transfer through a rectangular duct in the presence of a non-uniform transverse magnetic field. Journal of Magnetism and Magnetic materials, 327, pp.31-42.
[29] Ganguly, R., Sen, S. and Puri, I.K., 2004. Heat transfer augmentation using a magnetic fluid under the influence of a line dipole. Journal of Magnetism and Magnetic Materials, 271(1), pp.63-73.
[30] Fadaei, F., Shahrokhi, M., Dehkordi, A.M. and Abbasi, Z., 2017. Heat transfer enhancement of Fe3O4 ferrofluids in the presence of magnetic field. Journal of Magnetism and Magnetic Materials, 429, pp.314-323.
[31] Zeng, J., Deng, Y., Vedantam, P., Tzeng, T.R. and Xuan, X., 2013. Magnetic separation of particles and cells in ferrofluid flow through a straight microchannel using two offset magnets. Journal of Magnetism and Magnetic Materials, 346, pp.118-123.
[32] Sheikholeslami, M., Bandpy, M.G., Ellahi, R. and Zeeshan, A., 2014. Simulation of MHD CuO–water nanofluid flow and convective heat transfer considering Lorentz forces. Journal of Magnetism and Magnetic Materials, 369, pp.69-80.
[33] Zborowski, M., Sun, L., Moore, L.R., Williams, P.S. and Chalmers, J.J., 1999. Continuous cell separation using novel magnetic quadrupole flow sorter. Journal of magnetism and magnetic materials, 194(1-3), pp.224-230.
[34] Hoyos, M., Moore, L., Williams, P.S. and Zborowski, M., 2011. The use of a linear Halbach array combined with a step-SPLITT channel for continuous sorting of magnetic species. Journal of magnetism and magnetic materials, 323(10), pp.1384-1388.
[35] Dehghan, M., Daneshipour, M. and Valipour, M.S., 2018. Nanofluids and converging flow passages: A synergetic conjugate-heat-transfer enhancement of micro heat sinks. International Communications in Heat and Mass Transfer, 97, pp.72-77.
[36] Dehghan, M., Vajedi, H., Daneshipour, M., Pourrajabian, A., Rahgozar, S. and Ilis, G.G., 2020. Pumping power and heat transfer rate of converging microchannel heat sinks: errors associated with the temperature dependency of nanofluids. Journal of Thermal Analysis and Calorimetry, 140(3), pp.1267-1275.
[37] Dehghan, M., Daneshipour, M., Valipour, M.S., Rafee, R. and Saedodin, S., 2015. Enhancing heat transfer in microchannel heat sinks using converging flow passages. Energy Conversion and Management, 92, pp.244-250.