[1] Nagarani, N., Mayilsamy, K., Murugesan, A., and Kumar, G.S., 2014. Review of utilization of extended surfaces in heat transfer problems. Renewable and Sustainable Energy Reviews, 29, pp.604–613.
[2] Gawande, V.B., Dhoble, A.S., and Zodpe, D.B., 2014. Effect of roughness geometries on heat transfer enhancement in solar thermal systems. Renewable and Sustainable Energy Reviews, 32, pp.347–378.
[3] Sheikholeslami, M., Gorji, B.M. and Ganji, D.D., 2015. Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices. Renewable Sustainable Energy Reviews, 49, pp.444– 469.
[4] Shi, J., Hu, J., Schafer, S.R. and Chen, C.L., 2014. Numerical study of heat transfer enhancement of channel via vortex-induced vibration. Applied Thermal Engineering, 70(1), p.838–845.
[5] Khalid, A., Khan, I. and Shafie, S., 2017. Free convection flow of micropolar fluids over an Oscillating vertical plate. Malaysian Journal of Fundamental Applied Science, 13(4), pp.654–658.
[6] Pradhan, B., Das, S.S., Paul, A.K. and Dash, R.C., 2017. Unsteady free convection flow of a viscous incompressible polar fluid past a semi-infinite vertical porous moving plate. International Journal of Applied Engineering Research, 12(21), pp.10958–10963.
[7] Koffi, M., Andreopoulos, Y. and Jiji, L., 2017. Heat transfer enhancement by induced vortices in the vicinity of a rotationally oscillating heated plate. International Journal of Heat and Mass Transfer, 112, pp.862–875.
[8] Ashafa, S., Ahmed, A.A. and Sakir, A.A., 2017. Analytical solution of the effect of MHD inclination and unsteady heat transfer in a laminar, transition and turbulent flow of a basic gaseous micro-flow past a vertically moving oscillating plate. American Journal of Engineering & National Science 1(2), pp.30–35.
[9] Ellahi, R., Alamri, S.Z., Basit, A. and Majeed, A., 2018. Effects of MHD and slip on heat transfer boundary layer flow over a moving plate based on specific entropy generation. Journal of Taibah University for Science, 12(4), pp.476–482.
[10] Celik, B., Raisee, M. and Beskok, A., 2010. Heat transfer enhancement in a slot channel via a transversely oscillating adiabatic circular cylinder. International Journal of Heat and Mass Transfer, 53(4), pp.626–634.
[11] Fu, W.S. and Tong, B.H., 2002. Numerical investigation of heat transfer from a heated oscillating cylinder in a cross flow. International Journal of Heat and Mass Transfer, 45(14), pp.3033–3043.
[12] Beskok, A., Raisee, M., Celik, B., Yagiz, B. and Cheraghi, M., 2012. Heat transfer enhancement in a straight channel via a rotationally oscillating adiabatic cylinder. International Journal of Thermal Science, 58, pp.61–69.
[13] Pourgholam, M., Izadpanah, E., Motamedi, R. and Habibi, S.E., 2015. Convective heat transfer enhancement in a parallel plate channel by means of rotating or oscillating blade in the angular direction. Applied Thermal Engineering, 78(5), pp.248–257.
[14] Jahangiri, M. and Delbari, O., 2020. Heat transfer correlation for two phase flow in a mixing tank. Journal of Heat and Mass Transfer research, 7(1), pp.1-10.
[15] Rahman, A. and Tafti, D., 2020. Characterization of heat transfer enhancement for an oscillating flat plate-fin. International Journal of Heat and Mass Transfer, 147, 119001.
[16] Rahimi, M. and Soran, R.A., 2016. Slot jet impingement heat transfer for the cases of moving plate and moving nozzle. Journal of Brazilian Society of Mechanical Science and Engineering, 38, pp.2651–2659.
[17] Sarhan, A.R., Karim, M.R., Kadhim, Z.K. and Naser, J., 2019. Experimental investigation on the effect of vertical vibration on thermal performances of rectangular flat plate. Experimental Thermal and Fluid Science, 101, pp.231–240.
[18] Gomaa, H., Al Taweel, A.M., 2005. Effect of oscillatory motion on heat transfer at vertical flat surfaces. International Journal of Heat and Mass Transfer, 48(8), pp.1494–1504.
[19] Akcay, S., Akdag, U. and Palancioglu, H., 2020. Experimental investigation of mixed convection on an oscillating vertical flat plate. International Communications in Heat and Mass Transfer, 113, 104528.
[20] Chen, Y., Peng, D. and Liu, Y., 2020. Heat transfer enhancement of turbulent channel flow using a piezoelectric fan. International Journal of Heat and Mass Transfer, 147, 118964.
[21] Li, X.J., Zhang, J.Z. and Tana, X.M., 2018. An investigation on convective heat transfer performance around piezoelectric fan vibration envelope in a forced channel flow. International Journal of Heat and Mass Transfer, 126(8), pp.48–65.
[22] Ebrahimi, N.D., Wang, Y. and Sungtaek, J., 2018. Mechanisms of power dissipation in piezoelectric fans and their correlation with convective heat transfer performance. Sensors and actuators A: Physical 272, pp.242-252.
[23] Li, X.J., Zhang, J.Z. and Tana, X.M., 2018. Effects of blade shape on convective heat transfer induced by a piezoelectrically actuated vibrating fan. International Journal of Thermal Science, 132, pp.597-609.
[24] Izadpanah, E., Babaie, R.M., Sadeghi, H. and Talebi, S., 2017. Effect of rotating and oscillating blade on the heat transfer enhancement of non-Newtonian fluid flow in a channel. Applied Thermal Engineering, 113, pp.1277–1282.
[25] Maaspuro, M., 2016. Piezoelectric oscillating cantilever fan for thermal management of electronics and LEDs-A review. Microelectronics Reliability, 63, pp. 342-353.