[1] Stankiewicz, A.I. and Moulijn, J.A., 2000. Process intensification: Transforming chemical engineering, Chemical Engineering Progress, 96, pp.22-34
[2] Luo, Y., Luo, J.Z., Yue, X.J., Song, Y.J., Chu, G.W., Liu, Y., Le, Y. and Chen, J.-F., 2018. Feasibility studies of micromixing and mass-transfer in an ultrasonic assisted rotating packed bed reactor. Chemical Engineering Journal, 331, pp.510–516.
[3] Ramshaw, C. and Mallinson, R.H., US 4,283,255, Mass transfer process, United States Pat 1981:12.
[4] Zhang, L.L., Wang, J.X., Xiang, Y., Zeng, X.F. and Chen, J.F., 2011. Absorption of carbon dioxide with ionic liquid in a rotating packed bed contactor: Mass transfer study. Industrial & Engineering Chemistry Research, 50, pp.6957–6964.
[5] Liu, H.S., Lin, C.C., Wu, S.C. and Hsu, H.W., 1996. Characteristics of a rotating packed bed. Industrial & Engineering Chemistry Research, 35(10), pp.3590–3596.
[6] Kelleher, T. and Fair, J.R., 1996. Distillation Studies in a High-Gravity Contactor. Industrial & Engineering Chemistry Research, 35(12), pp.4646–4655.
[7] Chen, J.F., Gao, H., Zou, H.K., Chu, G.W., Zhang, L., Shao, L., Xiang, Y. and Wu, Y.-X., 2010. Cationic polymerization in rotating packed bed reactor: Experimental and modeling. AIChE Journal, 56(4), pp.1053-1062.
[8] Lin, C.C. and Liu, W.T., 2003. Ozone oxidation in a rotating packed bed, Journal of Chemical Technology & Biotechnology, 78, pp.138–141.
[9] Kang, F., Wang, D., Pu, Y., Zeng, X.F., Wang, J.X. and Chen, J.F., 2018. Efficient preparation of monodisperse CaCO3 nanoparticles as overbased nanodetergents in a high-gravity rotating packed bed reactor. Powder Technology, 325, pp.405–411.
[10] Neumann, K., Gladyszewski, K., Groß, K., Qammar, H., Wenzel, D., Górak, A. and Skiborowski, M., 2018. A guide on the industrial application of rotating packed beds. Chemical Engineering Research and Design, 134, pp.443–462.
[11] Thiels, M., Wong, D.S.H., Yu, C.H., Kang, J.L., Jang, S.S. and Tan, C.S., 2016. Modelling and Design of Carbon Dioxide Absorption in Rotating Packed Bed and Packed Column. IFAC-PapersOnLine, 49, pp.895–900.
[12] Sheng, M., Xie, C., Zeng, X., Sun, B., Zhang, L., Chu, G.,
Luo, Y.,
Chen, J.-F. and
Zou, H., 2018. Intensification of CO
2 capture using aqueous diethylenetriamine (DETA) solution from simulated flue gas in a rotating packed bed.
Fuel, 234, pp.1518-1527.
[13] Liu, Z., Esmaeili, A., Zhang, H., Xiao, H., Yun, J. and Shao, L., 2021. Carbon dioxide absorption with aqueous amine solutions promoted by piperazine and 1-methylpiperazine in a rotating zigzag bed, Fuel, 302, 121165.
[14] Borhani, T.N., Oko, E. and Wang, M., 2018. Process modelling and analysis of intensified CO2 capture using monoethanolamine (MEA) in rotating packed bed absorber. Journal of Cleaner Production, 204, pp.1124–1142.
[15] Lukin, I., Pietzka, L., Groß, K., Górak, A. and Schembecker, G., 2020. Economic evaluation of rotating packed bed use for aroma absorption from bioreactor off-gas. Chemical Engineering and Processing- Process Intensification, 154, 108011.
[16] Neumann, K., Gladyszewski, K., Groß, K., Qammar, H., Wenzel, D., Górak and A., Skiborowski, M., 2018. A guide on the industrial application of rotatingpacked beds. Chemical Engineering Research and Design, 134, pp.443-462.
[17] Groß, K., de Beer, M., Dohrn, S. and Skiborowski, M., 2020. Scale-Up of the Radial Packing Length in Rotating Packed Beds for Deaeration Processes. Industrial & Engineering Chemistry Research, 59(23), pp. 11042-11053.
[18]
Zhao, R.-H.,
Li, C.-P.,
Guo, F. and
Chen, J.-F., 2007. Scale-up Preparation of Organized Mesoporous Alumina in a Rotating Packed Bed.
Industrial & Engineering Chemistry Research, 46(10), pp.3317-3320.
[19] Abolhasani, M., Karami, A. and Rahimi, M., 2015. Numerical Modeling and Optimization of the Enhancement of the Cooling Rate in Concentric Tubes under Ultrasound Field. Numerical Heat Transfer, Part A: Applications, 67, pp.1282–1309.
[20] Dehbani, M., Rahimi, M., Abolhasani, M., Maghsoodi, A., Afshar, P.G., Dodmantipi, A.R. and Alsairafi, A.A., 2014. CFD modeling of convection heat transfer using 1.7 MHz and 24 kHz ultrasonic waves: A comparative study. Heat and Mass Transfer, 50, pp.1319–1333.
[21] Abolhasani, M., Rahimi, M., Dehbani, M. and Shabanian, S.R., 2012. CFD Modeling of Low, Medium and High Frequency Ultrasound Waves Propagation Inside a Liquid Medium. The 4rd National Conference on CFD Applications in Chemical & Petroleum Industries.
[22] Aghapour Aktij, S., Taghipour, A., Rahimpour, A., Mollahosseini, A. and Tiraferri, A., 2020. A critical review on ultrasonic-assisted fouling control and cleaning of fouled membranes. Ultrasonics, 108, 106228.
[23] Zheng, J., Guo, Y., Zhu, L., Deng, H. and Shang, Y., 2021. Cavitation effect in two-dimensional ultrasonic rolling process. Ultrasonics, 115, 106456.
[24] Viriyananon, K., Mingbunjerdsuk, J., Thungthong, T. and Chaiworapuek, W., 2021. Characterization of heat transfer and friction loss of water turbulent flow in a narrow rectangular duct under 25–40 kHz ultrasonic waves, Ultrasonics, 114, 106366.
[25] Parvizian, F., Rahimi, M., Hosseini, S.M., Madaeni, S.S. and Alsairafi, A.A., 2012. The Effect of High Frequency Ultrasound on Diffusion Boundary Layer Resistance in Ion-Exchange Membrane Transport, Desalination, 286, pp.155-165.
[26] Abolhasani, M., Rahimi, M., Dehbani, M. and Alsairafi, A.A., 2012. CFD Modeling of Heat Transfer by 1.7 MHz Ultrasound Waves, Numerical. Heat Transfer. part A-Application. 62, pp. 822-841.
[27] Legay, M., Gondrexon, N., Le Person, S., Boldo, P. and Bontemps, A., 2011. Enhancement of heat transfer by ultrasound: Review and recent advances. International Journal of Chemical Engineering, 2011.
[28] Rahimi, M., Abolhasani, M. and Azimi, N., 2015. High frequency ultrasound penetration through concentric tubes: Illustrating cooling effects and cavitation intensity. Heat and Mass Transfer, 51, pp.587-599.
[29] Abolhasani, M., Rahimi, M., Dehbani, M. and Alsairafi, A.A., 2012. CFD modeling of heat transfer by 1.7 MHz ultrasound waves, Numerical Heat Transfer, Part A: Applications, 62, pp.822–841.
[30] Tay, W.H., Lau, K.K. and Shariff, A.M., 2017. High performance promoter-free CO2 absorption using potassium carbonate solution in an ultrasonic irradiation system. Journal of CO2 Utilization, 21, pp.383–394.
[31] Bahoosh, R., Sedeh Ghahfarokhi, M. and Saffarian, M.R., 2018. Energy and Exergy Analyses of a Diesel Engine Running on Biodiesel Fuel. Journal of Heat and Mass Transfer Research, 5, pp. 95-104.
[32] Lee, S.Y. and Park, S.J., 2015. A review on solid adsorbents for carbon dioxide capture, Journal of Industrial and Engineering Chemistry, 23, pp.1 –11.
[33] Hu, G., Smith, K.H., Wu, Y., Mumford, K.A., Kentish, S.E., and Stevens, G.W., 2018. Carbon dioxide capture by solvent absorption using amino acids: A review, Chinese Journal of Chemical Engineering, 26(11), pp. 2229–2237.
[34] Cheng, H.H. and Tan, C.S., 2011. Removal of CO2 from indoor air by alkanolamine in a rotating packed bed. Separation and Purification Technology, 82, pp.156–166.
[35] Kang, J.L., Luo, Z.J., Liu, J.L., Sun, K., Wong, D.S.H., Jang, S.S., Tan, C.-S. and Shen, J.-F., 2014. Experiment and modeling studies on absorption of CO2 by dilute ammonia in rotating packed bed. Energy Procedia, 63, pp.1308–1313.
[36] Wu, T.W., Hung, Y.T., Chen, M.T. and Tan, C.S., 2017. CO2 capture from natural gas power plants by aqueous PZ/DETA in rotating packed bed. Separation and Purification Technology, 186, pp.309–317.
[37] Jassim, M.S., Rochelle, G., Eimer, D. and Ramshaw, C., 2007. Carbon dioxide absorption and desorption in aqueous monoethanolamine solutions in a rotating packed bed, Industrial & Engineering Chemistry Research, 46, pp. 2823–2833.
[38] Lin, C.C. and Chu, C.R., 2015. Feasibility of carbon dioxide absorption by NaOH solution in a rotating packed bed with blade packings. International Journal of Greenhouse Gas Control, 42, pp.117–123.
[39] Yu, C.H., Wu, T.W. and Tan, C.S., 2013. CO2 capture by piperazine mixed with non-aqueous solvent diethylene glycol in a rotating packed bed, International Journal of Greenhouse Gas Control, 19, pp.503–509.
[40] Lin, C.C. and Chen, Y.W., 2011. Performance of a cross-flow rotating packed bed in removing carbon dioxide from gaseous streams by chemical absorption. International Journal of Greenhouse Gas Control, 5, pp.668–675.
[41] Tay, W.H., Lau, K.K. and Shariff, A.M., 2017. High frequency ultrasonic-assisted chemical absorption of CO2 using monoethanolamine (MEA). Separation and Purification Technology, 183, pp.136–144.
[42] Shirzadi Ahou Dashti, M. and Abolhasani, M., 2020. Intensification of CO₂ capture by monoethanolamine solution containing TiO2 nanoparticles in a rotating packed bed, International Journal of Greenhouse Gas Control, 94, 102933.
[43] Jassim, M.S., 2002. Process Intensification: Absorption and Desorption of Carbon Dioxide from Monoethanolamine Solutions Using Higee Technology, (PhD Thesis, Newcastle University).
[44] Lin, C.C. and Chu, C.R., 2015. Mass transfer performance of rotating packed beds with blade packings in carbon dioxide absorption into sodium hydroxide solution. Separation and Purification Technology, 150, pp.196-203.
[45] Mohammadi Nouroddinvand, V. and Heidari, A., 2021. Experimental study of absorption with MEA solution in a novel Arc-RPB.
Chemical Engineering and Processing- Process Intensification,
165, 108450.
[46] Aroonwilas, A. and Veawab, A., 2004. Characterization and comparison of the CO2 absorption performance into single and blended alkanolamines in a packed column. Industrial & Engineering Chemistry Research, 43, 9, pp.2228–2237.
[47] Lin, C.C., Liu, W.T., and Tan, C.S., 2003. Removal of carbon dioxide by absorption in a rotating packed bed. Industrial & Engineering Chemistry Research, 42, pp.2381-2386.
[48] Lin, C.C. and Kuo, Y.W., 2016. Mass transfer performance of rotating packed beds with blade packings in absorption of CO2 into MEA solution. International Journal of Heat and Mass Transfer, 97, pp.712-718.