[1] Duffie, J.A. and Beckman, W.A., 2013. Solar engineering of thermal processes. John Wiley & Sons.
[2] Noghrehabadi, A., Hajidavaloo, E., Moravej, M. and Esmailinasab, A., 2018. An experimental study of the thermal performance of the square and rhombic solar collectors. Thermal Science, 22 (1 Part B), pp.487-494.
[3] Zhang, Y., Ravi, S.K. and Tan, S.C., 2019. Food-derived carbonaceous materials for solar desalination and thermo-electric power generation. Nano Energy, 65, p.104006.
[4] Rashidi, S., Karimi, N., Mahian, O. and Abolfazli Esfahani, J., 2019. A concise review on the role of nanoparticles upon the productivity of solar desalination systems. Journal of Thermal Analysis and Calorimetry, 135, pp.1145-1159.
[5] Rafiei, A., Alsagri, A. S., Mahadzir, S., Loni, R., Najafi, G., & Kasaeian, A. 2019, Thermal analysis of a hybrid solar desalination system using various shapes of cavity receiver: Cubical, cylindrical, and hemispherical. Energy Conversion and Management 198 p. 111861.
[6] Hassan, H., & Yousef, M. S., 2021. An assessment of energy, exergy and CO2 emissions of a solar desalination system under hot climate conditions.Process Safety and Environmental Protection,145, pp. 157-171.
[7] Abd Elbar, Ayman Refat, and Hamdy Hassan, 2020. An experimental work on the performance of new integration of photovoltaic panel with solar still in semi-arid climate conditions. Renewable Energy 146, pp. 1429-1443.
[8] Manokar, A. Muthu, M. Vimala, Ravishankar Sathyamurthy, A. E. Kabeel, D. Prince Winston, and Ali J. Chamkha, 2020. Enhancement of potable water production from an inclined photovoltaic panel absorber solar still by integrating with flat-plate collector Environment, Development and Sustainability 22, pp. 4145-4167.
[9] Salarabadi, Amir, and Masoud Rahimi, 2020. Experimental investigation of using an evaporation inhibitor layer in a solar still. Solar Energy 206, pp. 962-973.
[10] Nazari, Saeed, Habibollah Safarzadeh, and Mehdi Bahiraei, 2019. Performance improvement of a single slope solar still by employing thermoelectric cooling channel and copper oxide nanofluid: an experimental study. Journal of Cleaner Production 208. pp. 1041-1052.
[11] Sharshir, S.W., Ellakany, Y.M., Algazzar, A.M., Elsheikh, A.H., Elkadeem, M.R., Edreis, E.M., Waly, A.S., Sathyamurthy, R., Panchal, H. and Elashry, M.S., 2019. A mini review of techniques used to improve the tubular solar still performance for solar water desalination. Process Safety and Environmental Protection, 124, pp.204-212.
[12] Manokar, A.M., Vimala, M., Winston, D.P., Ramesh, R., Sathyamurthy, R., Nagarajan, P.K. and Bharathwaaj, R., 2019. Different parameters affecting the condensation rate on an active solar still—a review. Environmental Progress & Sustainable Energy, 38(1), pp.286-296.
[13] Khalifa, A.J.N. and Ibrahim, H.A., 2009. Effect of inclination of the external reflector on the performance of a basin type solar still at various seasons. Energy for Sustainable Development, 13(4), pp.244-249.
[14] Khalifa, Abdul Jabbar N., and Ahmad M. Hamood, 2009. Effect of insulation thickness on the productivity of basin type solar stills: an experimental verification under local climate." Energy Conversion and Management 50(9), pp. 2457-2461
[15] Murugavel, K. Kalidasa, and K. Srithar, 2011. Performance study on basin type double slope solar still with different wick materials and minimum mass of water. Renewable Energy 36(2), pp. 612-620.
[16] Kalbasi, Rasool, and M. Nasr Esfahani, 2010. Multi-effect passive desalination system, an experimental approach." World Applied Sciences Journal 10(10), pp. 1264-1271.
[17] Sakthivel, M., S. Shanmugasundaram, and T. Alwarsamy, 2010. An experimental study on a regenerative solar still with energy storage medium—Jute cloth. Desalination 264, no. 1(2), pp. 24-31.
[18] Bechki, D., H. Bouguettaia, J. Blanco-Galvez, S. Babay, B. Bouchekima, S. Boughali, and H. Mahcene, 2010. Effect of partial intermittent shading on the performance of a simple basin solar still in south Algeria. Desalination 260(1-3), pp. 65-69.
[19] Al-Garni, A.Z., 2012. Productivity enhancement of solar still using water heater and cooling fan. Journal of solar energy engineering, 134(3).
[20] Rajaseenivasan, T. and Murugavel, K.K., 2013. Theoretical and experimental investigation on double basin double slope solar still. Desalination, 319, pp.25-32.
[21] Moravej, M., Bozorg, M.V., Guan, Y., Li, L.K., Doranehgard, M.H., Hong, K. and Xiong, Q., 2020. Enhancing the efficiency of a symmetric flat-plate solar collector via the use of rutile TiO2-water nanofluids. Sustainable Energy Technologies and Assessments, 40, p.100783.