[1] Hu, Y.H. and Ruckenstein, E., 2004. Catalytic conversion of methane to synthesis gas by partial oxidation and CO2 reforming. Advances in catalysis, 48(1), pp.297-345.
[2] Pakhare, D. and Spivey, J., 2014. A review of dry (CO2) reforming of methane over noble metal catalysts. Chemical Society Reviews, 43(22), pp.7813-7837.
[3] York, A.P., Xiao, T.C., Green, M.L. and Claridge, J.B., 2007. Methane oxyforming for synthesis gas production. Catalysis Reviews, 49(4), pp.511-560.
[4] Fan, M.S., Abdullah, A.Z. and Bhatia, S., 2009. Catalytic technology for carbon dioxide reforming of methane to synthesis gas. ChemCatChem, 1(2), pp.192-208.
[5] Huang, J., Ma, R., Huang, T., Zhang, A. and Huang, W., 2011. Carbon dioxide reforming of methane over Ni/Mo/SBA-15-La2O3 catalyst: Its characterization and catalytic performance. Journal of Natural Gas Chemistry, 20(5), pp.465-470.
[6] García-Diéguez, M., Finocchio, E., Larrubia, M.Á., Alemany, L.J. and Busca, G., 2010. Characterization of alumina-supported Pt, Ni and PtNi alloy catalysts for the dry reforming of methane. Journal of Catalysis, 274(1), pp.11-20.
[7] Alvarez-Galvan, C., Melian, M., Ruiz-Matas, L., Eslava, J.L., Navarro, R.M., Ahmadi, M., Roldan Cuenya, B. and Fierro, J.L.G., 2019. Partial oxidation of methane to syngas over nickel-based catalysts: influence of support type, addition of rhodium, and preparation method. Frontiers in Chemistry, 7, p.104.
[8] De Souza, T.L., da SILVA, V.S.T. and Cardozo Filho, L., 2015. Thermodynamic Analysis of synthesis gas production from autothermal reforming of mehane. Blucher Chemical Engineering Proceedings, 1(2), pp.15460-15468.
[9] Nikolla, E., Holewinski, A., Schwank, J. and Linic, S., 2006. Controlling carbon surface chemistry by alloying: carbon tolerant reforming catalyst. Journal of the American Chemical Society, 128(35), pp.11354-11355.
[10] Wang, Z., Xu, H., Zhang, Z., Wang, S., Ding, L., Zeng, Q., Yang, L., Pei, T., Liang, X., Gao, M. and Peng, L.M., 2010. Growth and performance of yttrium oxide as an ideal high-κ gate dielectric for carbon-based electronics. Nano letters, 10(6), pp.2024-2030.
[11] Yan, Z., Xu, Z., Yu, J. and Jaroniec, M., 2015. Highly active mesoporous ferrihydrite supported Pt catalyst for formaldehyde removal at room temperature. Environmental Science & Technology, 49(11), pp.6637-6644.
[12] Ballarini, A., Benito, P., Fornasari, G., Scelza, O. and Vaccari, A., 2013. Role of the composition and preparation method in the activity of hydrotalcite-derived Ru catalysts in the catalytic partial oxidation of methane. international journal of hydrogen energy, 38(35), pp.15128-15139.
[13] Kodo, M., Soga, K., Yoshida, H. and Yamamoto, T., 2010. Doping effect of divalent cations on sintering of polycrystalline yttria. Journal of the European Ceramic Society, 30(13), pp.2741-2747.
[14] Liu, H.M. and He, D.H., 2010. Physicochemical properties of Ni/Γ-Al2O3-Aln and effects of aln on catalytic performance of Ni/Γ-Al2O3-Aln in partial oxidation of methane. The Journal of Physical Chemistry C, 114(32), pp.13716-13721.
[15] Zhu, Q., Zhao, X. and Deng, Y., 2004. Advances in the partial oxidation of methane to synthesis gas. Journal of Natural Gas Chemistry. 13(4), p.191.
[16] Costa, L.O.O., Silva, A.M., Borges, L.E.P., Mattos, L.V. and Noronha, F.B., 2008. Partial oxidation of ethanol over Pd/CeO2 and Pd/Y2O3 catalysts. Catalysis Today, 138(3-4), pp.147-151.
[17] Wu, X. and Kawi, S., 2010. Steam reforming of ethanol to H 2 over Rh/Y2 O3: crucial roles of Y2 O3 oxidizing ability, space velocity, and H2/C. Energy & Environmental Science, 3(3), pp.334-342.
[18] Liu, H. and He, D., 2011. Properties of Ni/Y2O3 and its catalytic performance in methane conversion to syngas. International journal of hydrogen energy, 36(22), pp.14447-14454.
[19] Chen, F., Tao, Y., Ling, H., Zhou, C., Liu, Z., Huang, J. and Yu, A., 2020. Ni-Cu bimetallic catalysts on Yttria-stabilized zirconia for hydrogen production from ethanol steam reforming. Fuel, 280, p.118612.
[20] Niazi, Z., Irankhah, A., Wang, Y. and Arandiyan, H., 2020. Cu, Mg and Co effect on nickel-ceria supported catalysts for ethanol steam reforming reaction. International Journal of Hydrogen Energy, 45(41), pp.21512-21522.
[21] Jabbour, K., El Hassan, N., Casale, S., Estephane, J. and El Zakhem, H., 2014. Promotional effect of Ru on the activity and stability of Co/SBA-15 catalysts in dry reforming of methane. International journal of hydrogen energy, 39(15), pp.7780-7787.
[22] Fidalgo, B. and Menendez, J.Á., 2011. Carbon materials as catalysts for decomposition and CO2 reforming of methane: a review. Chinese journal of catalysis, 32(1-2), pp.207-216.
[23] Yousefpor, M., Tajally, M., Taherian, Z. and Khoshandam, B., 2021. A comparison of catalyst behavior of Samaria Modified Ni Catalyst Supported on Mesoporous Silica and Carbon for Methane CO2 Reforming. Journal of Heat and Mass Transfer Research, 8(1), pp.105-113.
[24] Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.F. and Stucky, G.D., 1998. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. science, 279(5350), pp.548-552.
[25] Gharahshiran, V.S., Yousefpour, M. and Amini, V., 2020. A comparative study of zirconia and yttria promoted mesoporous carbon-nickel-cobalt catalysts in steam reforming of ethanol for hydrogen production. Molecular Catalysis, 484, p.110767.
[26] Goscianska, J., Pietrzak, R. and Matos, J., 2018. Catalytic performance of ordered mesoporous carbons modified with lanthanides in dry methane reforming. Catalysis Today, 301, pp.204-216.
[27] Fidalgo, B., Arenillas, A. and Menéndez, J.A., 2010. Influence of porosity and surface groups on the catalytic activity of carbon materials for the microwave-assisted CO2 reforming of CH4, Fuel, 89, 4002-7.
[28] Jun, S., Joo, S.H., Ryoo, R., Kruk, M., Jaroniec, M., Liu, Z., Ohsuna, T. and Terasaki, O., 2000. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. Journal of the American chemical society, 122(43), pp.10712-10713.
[29] Imperor-Clerc, M., Bazin, D., Appay, M.D., Beaunier, P. and Davidson, A., 2004. Crystallization of β-MnO2 nanowires in the pores of SBA-15 silicas: in situ investigation using synchrotron radiation. Chemistry of materials, 16(9), pp.1813-1821.
[30] Taherian, Z., Yousefpour, M., Tajally, M. and Khoshandam, B., 2017. Promotional effect of samarium on the activity and stability of Ni-SBA-15 catalysts in dry reforming of methane. Microporous and Mesoporous Materials, 251, pp.9-18.
[31] Taherian, Z., Yousefpour, M., Tajally, M. and Khoshandam, B., 2017. A comparative study of ZrO2, Y2O3 and Sm2O3 promoted Ni/SBA-15 catalysts for evaluation of CO2/methane reforming performance. International Journal of Hydrogen Energy, 42(26), pp.16408-16420.
[32] Rouquerol, J., Rouquerol, F., Llewellyn, P., Maurin, G. and Sing, K.S., 2013. Adsorption by powders and porous solids: principles, methodology and applications. Academic press.
[33] Cohen, E.R., Mills, I.M., Cvitas, T., Frey, J.G., Quack, M., Holström, B. and Kuchitsu, K. eds., 2007. Quantities, units and symbols in physical chemistry. Royal Society of Chemistry.
[34] Taherian, Z., Yousefpour, M., Tajally, M. and Khoshandam, B., 2017. Catalytic performance of Samaria-promoted Ni and Co/SBA-15 catalysts for dry reforming of methane. International Journal of Hydrogen Energy, 42(39), pp.24811-24822.
[35] Li, J.F., Xia, C., Au, C.T. and Liu, B.S., 2014. Y2O3-promoted NiO/SBA-15 catalysts highly active for CO2/CH4 reforming. International journal of hydrogen energy, 39(21), pp.10927-10940.
[36] Juan-Juan, J., Román-Martínez, M.C. and Illán-Gómez, M.J., 2009. Nickel catalyst activation in the carbon dioxide reforming of methane: effect of pretreatments. Applied Catalysis A: General, 355(1-2), pp.27-32.
[37] Nabgan, W., Abdullah, T.A.T., Mat, R., Nabgan, B., Jalil, A.A., Firmansyah, L. and Triwahyono, S., 2017. Production of hydrogen via steam reforming of acetic acid over Ni and Co supported on La2O3 catalyst. international journal of hydrogen energy, 42(14), pp.8975-8985.