Hydrodynamic Cavitation in the Fuel Injector Nozzle and its Effect on Spray Characteristics: A Review

Document Type : Review Article

Authors

Mechanical Engineering Department, Faculty of Technology & Engineering,The Maharaja Sayajirao University of Baroda, Vadodara, India

Abstract

The performance of internal combustion engines can be improved by optimizing fuel spray characteristics. However, high injection pressures and small nozzle diameters in modern fuel injectors result in cavitation flows inside the nozzle, making it difficult to accurately characterize vapor bubble formation and growth. In this review, we explore the influence of cavitation flow on spray formation and examine the effects of geometric and operational factors. We discuss the experimental techniques used to generate a cavitation map and the mathematical models used to describe the behavior and magnitude of the bubble. We also investigate the impact of cavitation on spray properties, including the enhancement of liquid jet fragmentation due to the collapse of cavitation bubbles near the nozzle output. We present a multidimensional cavitation-coupled spray model and discuss the effect of cavitation on spray angle. While experimental work is effective, theoretical analysis can also provide insights into the impact of cavitation flow on spray characteristics. Our review concludes that the spray angle increases during the growing cavitation and super cavitation regimes, but decreases significantly following the cavitation flip. The string cavitation is observed when the position of the needle valve shifts or at a lower needle lift and the spray cone angle increases significantly. Overall, this review provides an inclusive overview of cavitation flow and its influence on spray formation and will aid in the development of more efficient internal combustion engines.

Keywords

Main Subjects


[1]    ExxonMobil., 2014. The Outlook for Energy: A view to 2040. Technical report.
[2]    Scitesch, G., 2003. Modeling engine spray and combustion process. New York: Springer.
[3]    Baumgarten, C., 2006. Mixture formation in internal combustion engines. Springer Science & Business Media.
[4]    Brennen, C. E., 2014. Cavitation and bubble dynamics. Cambridge University Press.
[5]    Schmidt, D. P., &Corradini, M. L., 2001. The internal flow of diesel fuel injector nozzles: a review. International Journal of Engine Research, 2(1), 1-22.
[6]    Franc, J. P., & Michel, J. M., 2006. Fundamentals of cavitation. Springer Science & Business Media.
[7]    Cui, J., Lai, H., Feng, K., & Ma, Y., 2018. Quantitative analysis of the minor deviations in nozzle internal geometry effect on the cavitating flow. Experimental Thermal and Fluid Science, 94, 89-98.
[8]    Bergwerk, W., 1959. Flow pattern in diesel nozzle spray holes. Proceedings of the Institution of Mechanical Engineers, 173(1), 655-660.
[9]    Nurick, W. H., 1976. Orifice cavitation and its effect on spray mixing. ASME Journal of Fluids Engineering, 98(4), 681-687.
[10] Soteriou, C., Andrews, R., & Smith, M., 1995. Direct injection diesel sprays and the effect of cavitation and hydraulic flip on atomization. SAE transactions, (950083).
[11] Chaves, H., Knapp, M., Kubitzek, A., Obermeier, F., & Schneider, T., 1995. Experimental study of cavitation in the nozzle hole of diesel injectors using transparent nozzles. SAE transactions, (950504).
[12] Schmidt, D. P., Rutland, C. J., Corradini, M. L., Roosen, P., &Genge, O., 1999. Cavitation in asymmetric two-dimensional nozzles. Journal of Engines, 108(3), 613-629.
[13] Arcoumanis, C., Flora, H., Gavaises, M., &Badami, M., 2000. Cavitation in real-size multi-hole diesel injector nozzles. SAE transactions, (2000-01-1246).
[14] Winklhofer, E., Kull, E., Kelz, E., &Morozov, A., 2001. Comprehensive hydraulic and flow field documentation in model throttle experiments under cavitation conditions. In Proceedings of the ILASS-Europe conference, Zurich 2001 (pp. 574-579).
[15] Payri, R., Salvador, F. J., Gimeno, J., & Venegas, O., 2013. Study of cavitation phenomenon using different fuels in a transparent nozzle by hydraulic characterization and visualization. Experimental Thermal and Fluid Science, 44, 235-244.
[16] Sou, A., Maulana, M. I., Hosokawa, S., &Tomiyama, A., 2008. Ligament formation induced by cavitation in a cylindrical nozzle. Journal of Fluid Science and Technology, 3(5), 633-644.
[17] Mauger, C., Méès, L., Michard, M., Azouzi, A., &Valette, S., 2012. Shadowgraph, Schlieren and interferometry in a 2D cavitating channel flow. Experiments in fluids, 53(6), 1895-1913.
[18] Cui, J., Lai, H., Feng, K., & Ma, Y., 2018. Quantitative analysis of the minor deviations in nozzle internal geometry effect on the cavitating flow. Experimental Thermal and Fluid Science, 94, 89-98.
[19] Kirsch, V., Hermans, M., Schönberger, J., Ruoff, I., Willmann, M., Reisgen, U., ...&Reddemann, M. A., 2019. Transparent high-pressure nozzles for visualization of nozzle internal and external flow phenomena. Review of Scientific Instruments, 90(3), 033702.
[20] Weisbach, J., 1882. Mechanics of engineering: Theoretical mechanics, with an introduction to the calculus. D. Van Nostrand.
[21] Lichtarowicz, A., Duggins, R. K., & Markland, E., 1965. Discharge coefficients for incompressible non-cavitating flow through long orifices. Journal of mechanical engineering science, 7(2), 210-219.
[22] Reitz, R. D., 1978. Atomization and other breakup regimes of a liquid jet. Princeton University.
[23] Rayleigh, L., 1917. On the pressure developed in a liquid during the collapse of a spherical cavity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 34(200), 94-98.
[24] Plesset, M. S., 1949. The dynamics of cavitation bubbles. Trans. ASME, J. Appl. Mechanics, 16, 228–231.
[25] Knapp, R. T., Daily, J. W., &Hammitt, F. G., 1970. Cavitation. McGraw-Hill.
[26] Kato, H., Kayano, H., &Kageyama, Y., 1994. A consideration of thermal effect on cavitation bubble growth. American Society of Mechanical Engineers, New York, NY (United States).
[27] Rider, W., &Kothe, D., 1995. Stretching and tearing interface tracking methods. In 12thcomputational  fluid dynamics conference.
[28] Hirt, C. W., & Nichols, B. D., 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of computational physics, 39(1), 201-225.
[29] Kubota, A., Kato, H., & Yamaguchi, H., 1989. Finite difference analysis of unsteady cavitation on a two-dimensional hydrofoil. In International Conference on Numerical Ship Hydrodynamics, 5th.
[30] Delannoy, Y., &Kueny, J. L., 1990. Two phase flow approach in unsteady cavitation modelling. ASME Journal Fluids Engineering Division (FED), 98, 153-158.
[31] Chen, Y., & Heister, S. D., 1995. Two-phase modeling of cavitated flows. Computers & Fluids, 24(7), 799-809.
[32] Avva, R. K., Singhal, A. K., & Gibson, D. H., 1995. An enthalpy based model of cavitation. ASME-PUBLICATIONS-FED, 226, 63-70.
[33] Schmidt, D. P., Rutland, C. J., &Corradini, M. L., 1999. A fully compressible, two-dimensional model of small, high-speed, cavitating nozzles. Atomization and sprays, 9(3).
[34] Salvador, F. J., Hoyas, S., Novella, R., &Martínez-López, J., 2011. Numerical simulation and extended validation of two-phase compressible flow in diesel injector nozzles. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 225(4), 545-563.
[35] Open CFD Ltd., 2014. OpenFOAM, Documentation.
[36] Ning, W., Reitz, R. D., Diwakar, R., & Lippert, A. M., 2008. A numerical investigation of nozzle geometry and injection condition effects on diesel fuel injector flow physics. SAE Technical Paper.
[37] Los Alamos National Laboratory. 1999. KIVA-3V Manual.
[38] Merkle, C. L., 1998. Computational modelling of the dynamics of sheet cavitation. In Proc. of the 3rd Int. Symp. on Cavitation, Grenoble, France.
[39] Kunz, R. F., Boger, D. A., Stinebring, D. R., Chyczewski, T. S., Lindau, J. W., Gibeling, H. J., Venkateswaran, S., &Govindan, T. R., 2000. A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction. Computers & Fluids, 29(8), 849-875.
[40] Schnerr, G. H., & Sauer, J., 2001. Physical and numerical modeling of unsteady cavitation dynamics. In Fourth International Conference on Multiphase Flow, ICMF New Orleans.
[41] Singhal, A. K., Athavale, M. M., Li, H., & Jiang, Y., 2002. Mathematical basis and validation of the full cavitation model. Journal of Fluids Engineering, 124(3), 617-624.
[42] Zwart, P. J., Gerber, A. G., &Belamri, T., 2004. A two-phase flow model for predicting cavitation dynamics. In Fifth International Conference on Multiphase Flow, Yokohama, Japan.
[43] Yuan, W., &Schnerr, G. N., 2003. Numerical simulation of two-phase flow in injection nozzles: Interaction of cavitation and external jet formation. Journal of Fluids Engineering, 125(6), 963-969.
[44] Alajbegovic, A., Greif, D., Basara, B., &Iben, U., 2003. Cavitation calculation with the two-fluid model. In 3rd European-Japanese Two-Phase Flow Group Meeting, Certosa di Pontignano.
[45] Battistoni, M., &Grimaldi, C. N., 2010. Analysis of transient cavitating flows in diesel injectors using diesel and biodiesel fuels. SAE International Journal of Fuels and Lubricants, 3(2), 879-900.
[46] AVL. Fire® Documentation.
[47] Giannadakis, E., Gavaises, M., &Arcoumanis, C., 2008. Modelling of cavitation in diesel injector nozzles. Journal of Fluid Mechanics, 616, 153-193.
[48] Sou, A., Biçer, B., &Tomiyama, A., 2014. Numerical simulation of incipient cavitation flow in a nozzle of fuel injector. Computers & Fluids, 103, 42-48.
[49] Mohan, B., Yang, W., & Chou, S., 2014. Cavitation in injector nozzle holes–a parametric study. Engineering Applications of Computational Fluid Mechanics, 8(1), 70-81.
[50] Saha, K., & Li, X., 2016. Assessment of cavitation models for flows in diesel injectors with single-and two-fluid approaches. Journal of Engineering for Gas Turbines and Power, 138(1).
[51] He, Z., Zhang, L., Saha, K., Som, S., Duan, L., & Wang, Q., 2017. Investigations of effect of phase change mass transfer rate on cavitation process with homogeneous relaxation model. International Communications in Heat and Mass Transfer, 89, 98-107.
[52] Sanmiguel-Rojas, E., Gutierrez-Castillo, P., delPino, C., &Auñón-Hidalgo, J. A., 2019. Cavitation in transient flows through a micro-nozzle. Journal of Fluids Engineering, 141(9).
[53] Sanmiguel-Rojas, E., Gutierrez-Castillo, P., delPino, C., &Auñón-Hidalgo, J. A., 2019. Cavitation in transient flows through a micro-nozzle. Journal of Fluids Engineering, 141(9).
[54] Payri, R., Gimeno, J., Martí-Aldaraví, P., &Martínez, M., 2021. Validation of a three-phase Eulerian CFD model to account for cavitation and spray atomization phenomena. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43(4), 1-5.
[55] Payri, R., Margot, X., & Salvador, F. J., 2002. A numerical study of the influence of diesel nozzle geometry on the inner cavitating flow. SAE paper.
[56] Som, S., Longman, D. E., Ramírez, A. I., & Aggarwal, S. K., 2010. A comparison of injector flow and spray characteristics of biodiesel with petrodiesel. Fuel, 89(12), 4014-4024.
[57] Thulasi, V., &Rajagopal, T. K., 2013. Study of Internal Flow Characteristics of Injector Fuelled with Various Blends of Diethyl Ether and Diesel Using CFD Study of Internal Flow Characteristics of Injector Fuelled with Various Blends of Diethyl Ether and Diesel Using CFD. Frontiers in Heat and Mass Transfer (FHMT), 4(2).
[58] Battistoni M, Som S, Longman DE., 2014. Comparison of mixture and multifluid models for in-nozzle cavitation prediction. Journal of Engineering for Gas Turbines and Power, 136(6).
[59] Battistoni M, Xue Q, Som S, Pomraning E., 2014. Effect of off-axis needle motion on internal nozzle and near exit flow in a multi-hole diesel injector. SAE international Journal of Fuels and Lubricants, 7(1):167-82.
[60] Salvador FJ, Martínez-López J, Caballer M, De Alfonso C., 2013. Study of the influence of the needle lift on the internal flow and cavitation phenomenon in diesel injector nozzles by CFD using RANS methods. Energy conversion and management, 66:246-56.
[61] Salvador FJ, Jaramillo D, Romero JV, Roselló MD., 2017. Using a homogeneous equilibrium model for the study of the inner nozzle flow and cavitation pattern in convergent-divergent nozzles of diesel injectors. Journal of Computational and Applied Mathematics. 2017 Jan 1;309:630-41.
[62] Yu H, Goldsworthy L, Brandner PA, Li J, Garaniya V., 2018. Modelling thermal effects in cavitating high-pressure diesel sprays using an improved compressible multiphase approach. Fuel. 2018 Jun 15;222:125-45.
[63] Ahmed A, Duret B, Reveillon J, DemoulinFX., 2020. Numerical simulation of cavitation for liquid injection in non-condensable gas. International Journal of Multiphase Flow. 2020 Jun 1;127:103269.
[64] Reitz RD. Atomization and other breakup regimes of a liquid jet. Princeton University; 1978.
[65] Reitz RD. Mechanism of breakup of round liquid jets. Encyclopedia of fluid mechanics. 1986.
[66] Huh K, Gosman AD. Atomization mechanism of fuel injection. ICLASS-90, Hartford, Connecticut. 1990.
[67] Arai M. Similarity between the break-up lengths of a high-speed liquid jet in atmospheric and pressurized conditions. Proc. of ICLASS-91. 1991.
[68] Hiroyasu H., 1991. Break-up length of a liquid jet and internal flow in a nozzle. InProc. 5th. ICLASS 1991, pp. 275-282.
[69] Arai M. Break-up mechanisms of a high-speed liquid jet and control methods for a spray behavior. ISASC-94. 1994.
[70] He L, Ruiz F. Effect of cavitation on flow and turbulence in plain orifices for high-speed atomization. Atomization and sprays. 1995;5(6).
[71] Arcoumanis C, Gavaises M, French B., 1997. Effect of fuel injection processes on the structure of diesel sprays. SAE transactions. 1997 Jan 1:1025-64.
[72] von KuensbergSarre C, Kong SC, Reitz RD., 1999. Modeling the effects of injector nozzle geometry on diesel sprays. SAE transactions. 1999 Jan 1:1375-88.
[73] Reitz RD., 1987. Modeling atomization processes in high-pressure vaporizing sprays. Atomisation Spray Technology. 1987;3(4):309-37.
[74] Berg EV., Edelbauer W., Tatschl R., Volmajer M., Kegl B., Alajbegovic A., Ganippa L., 2003. Validation of a CFD model for coupled simulation of nozzle flow, primary fuel jet break-up and spray formation. InInternal Combustion Engine Division Spring Technical Conference 2003 Jan 1, Vol. 36789, (pp. 171-180).
[75] Berg EV, Edelbauer W, Alajbegovic A, Tatschl R., 2003. Coupled calculation of cavitating nozzle flow, primary diesel fuel break-up and spray formation with an Eulerian multi-fluid-model. InProc. 9th International Conference on Liquid Atomisation and Spray Systems (ICLASS'03) 2003 Jul (pp. 12-02).
[76] Som S., Ramirez AI., Aggarwal SK., Kastengren AL., El-Hannouny E., Longman DE., Powell CF., Senecal PK., 2009. Development and validation of a primary breakup model for diesel engine applications. SAE Technical Paper; 2009 Apr 20.
[77] Som S., Aggarwal S., 2009. Assessment of atomization models for diesel engine simulations. Atomization and Sprays. 2009;19(9).
[78] Som S., Aggarwal SK., 2010. Effects of primary breakup modeling on spray and combustion characteristics of compression ignition engines. Combustion and flame. 2010 Jun 1;157(6):1179-93.
[79] Wang Y, Ge HW, Reitz RD., 2010. Validation of mesh-and timestep-independent spray models for multi-dimensional engine CFD simulation. SAE International Journal of Fuels and Lubricants. 2010 Jan 1;3(1):277-302.
[80] Richards KJ.,Senecal PK., 2008.Pomraning E. CONVERGE™ (Version 1.2) manual. Middleton, WI: Convergent Science, Inc.
[81] Battistoni M., Grimaldi C., Mariani F., 2012. Coupled simulation of nozzle flow and spray formation using diesel and biodiesel for CI engine applications. SAE Technical Paper; 2012 Apr 16.
[82] Lebas R., Menard T., Beau PA., Berlemont A., 2009.Demoulin FX. Numerical simulation of primary break-up and atomization: DNS and modelling study. International Journal of Multiphase Flow. 2009 Mar 1;35(3):247-60.
[83] Örley F, Trummler T, Hickel S, Mihatsch MS, Schmidt SJ, Adams NA. Large-eddy simulation of cavitating nozzle flow and primary jet break-up. Physics of Fluids. 2015 Aug 21;27(8):086101.
[84] Salvador, F. J., Pastor, J. M., Gomez-Soriano, J., &Martínez-Miracle, E. C., 2023. Performance of elliptical nozzles on the spray dynamics of convergent and constant section nozzles by means of a Σ-Y coupled model. Fuel, 346, 128259.
[85] Sou, A., Hosokawa, S., &Tomiyama, A., 2007. Effects of cavitation in a nozzle on liquid jet atomization. International Journal of Heat and Mass Transfer, 50(17-18), 3575-3582.
[86]   Sou, A., Minami, S., Prasetya, R., Pratama, R. H., Moon, S., Wada, Y., &Yokohata, H., 2015. X-ray visualization of cavitation in nozzles with various sizes. In ICLASS-15.
[87]   Suh, H. K., & Lee, C. S., 2008. Effect of cavitation in nozzle orifice on the diesel fuel atomization characteristics. International Journal of Heat and Fluid Flow, 29(4), 1001-1009.
[88]   Biçer, B., &Sou, A., 2016. Application of the improved cavitation model to turbulent cavitating flow in fuel injector nozzle. Applied Mathematical Modelling, 40(7-8), 4712-4726.
[89]   Abderrezzak, B., & Huang, Y., 2016. A contribution to the understanding of cavitation effects on droplet formation through a quantitative observation on breakup of liquid jet. International Journal of Hydrogen Energy, 41(35), 15821-15828.
[90]   Payri, F., Bermúdez, V., Payri, R., & Salvador, F. J., 2004. The influence of cavitation on the internal flow and the spray characteristics in diesel injection nozzles. Fuel, 83(4-5), 419-431.
[91]   Payri, R., García, J. M., Salvador, F. J., &Gimeno, J., 2005. Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics. Fuel, 84(5), 551-561.
[92]   Payri, R., Salvador, F. J., Gimeno, J., & Venegas, O., 2013. Study of cavitation phenomenon using different fuels in a transparent nozzle by hydraulic characterization and visualization. Experimental Thermal and Fluid Science, 44, 235-244.
[93]   Desantes, J. M., Payri, R., Salvador, F. J., &Soare, V., 2005, April 11. Study of the influence of geometrical and injection parameters on diesel sprays characteristics in isothermal conditions. SAE Technical Paper.
[94]   Abbasiasl, T., Niazi, S., Aghdam, A. S., Chen, H., Cebeci, F. Ç., Ghorbani, M., Grishenkov, D., &Koşar, A., 2020. Effect of intensified cavitation using poly (vinyl alcohol) microbubbles on spray atomization characteristics in microscale. AIP Advances, 10(2), 025318.
[95]   Hwang, J., 2021. Interaction of Cavitation with Sprays in High-Pressure Diesel Injection Systems. In Cavitation and Bubble Dynamics (pp. 249-264). Academic Press.
[96]   Gavaises, M., Andriotis, A., Papoulias, D., Mitroglou, N., &Theodorakakos, A., 2009. Characterization of string cavitation in large-scale Diesel nozzles with tapered holes. Physics of Fluids, 21(5), 052107.
[97]   Cao, T., He, Z., Si, Z., EL-Seesy, A. I., Guan, W., Zhou, H., & Wang, Q., 2020. Optical experimental study on cavitation development with different patterns in diesel injector nozzles at different fuel temperatures. Experiments in Fluids, 61, 1-14.
[98]   Prasetya, R., Sou, A., Oki, J., Nakashima, A., Nishida, K., Wada, Y., ...&Yokohata, H., 2021. Three-dimensional flow structure and string cavitation in a fuel injector and their effects on discharged liquid jet. International Journal of Engine Research, 22(1), 243-256.
[99]   Nurcholik, S. D., Sou, A., Miwa, T., Kawaguchi, M., Matsumoto, Y., Nishida, K., & Ueki, Y., 2023. Single and twin string cavitation swirling flows in multi-hole mini-sac diesel injector and sprays. Journal of Fluid Science and Technology, 18(2), JFST0023-JFST0023.
[100] Guan, W., He, Z., Zhang, L., Guo, G., Cao, T., &Leng, X., 2021. Investigations on interactions between vortex flow and the induced string cavitation characteristics in real-size diesel tapered-hole nozzles. Fuel, 287, 119535.
[101] Wei, Y., Fan, L., Zhang, H., Gu, Y., Deng, Y., Leng, X., ...& He, Z., 2022. Experimental investigations into the effects of string cavitation on diesel nozzle internal flow and near field spray dynamics under different injection control strategies. Fuel, 309, 122021.
[102] Kumar, A., Ghobadian, A., & Nouri, J., 2022. Numerical simulation and experimental validation of cavitating flow in a multi-hole diesel fuel injector. International Journal of Engine Research, 23(6), 958-973.
[103] Gavaises, M., Murali-Girija, M., Rodriguez, C., Koukouvinis, P., Gold, M., & Pearson, R., 2022. Numerical simulation of fuel dribbling and nozzle wall wetting. International Journal of Engine Research, 23(1), 132-149.
[104] Yang, X., Xue, R., Wang, N., Huang, Z., Zhang, H., Liu, X., ...&Hou, Y., 2023. Review of internal cavitating flow in injection nozzles, external atomization and cooling in liquid nitrogen spray cooling systems. Cryogenics, 103661.
[105] Manin, J., Yasutomi, K., & Pickett, L. M., 2018. Transient cavitation in transparent diesel injectors (No. SAND2018-3668C). Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).
[106] Knox-Kelecy, A. L. (Doctoral dissertation, The University of Wisconsin-Madison). Turbulent flow in a scale model of a diesel fuel injector nozzle hole.
[107] Ohrn, T. R., Senser, D. W., & Lefebvre, A. H., 1991. Geometric effects on spray cone angle for plain-orifice atomizers. Atomization and Sprays, 1(3).
[108] Gelalles, A. G., 1930. Coefficients of discharge of fuel injection nozzles for compression-ignition engines. US Government Printing Office.