[1] Chen, X.-M., Ren, Y., Liu, W., Feng, X., Jia, Y., Tao, Y. and Jiang, H., 2017. A Simplified Microfluidic Device for Particle Separation with Two Consecutive Steps: Induced Charge Electro-osmotic Prefocusing and Dielectrophoretic Separation. 89(17), pp.9583–9592.
[2] Zheng, H., 2013. Using molecular tweezers to move and image nanoparticles. Nanoscale, 5(10), p.4070–78.
[3] Sun, H., Ren, Y., Liu, W., Feng, X., Hou, L., Tao, Y. and Jiang, H., 2018. Flexible Continuous Particle Beam Switching via External-Field-Reconfigurable Asymmetric Induced-Charge Electroosmosis. 90(19), pp.11376–11384.
[4] Manz, A., Harrison, D.Jed., Verpoorte, E.M.J., Fettinger, James.C., Paulus, A., Lüdi, H. and Widmer, H.Michael., 1992. Planar chips technology for miniaturization and integration of separation techniques into monitoring systems. Journal of Chromatography A, 593(1-2), pp.253–258.
[5] Chen, D., Du, H. and Chee Kiang Tay, 2009. Rapid Concentration of Nanoparticles with DC Dielectrophoresis in Focused Electric Fields. 5(1), pp.55–60.
[6] Ho, C.-T., Lin, R.-Z., Chang, W.-Y., Chang, H.-Y. and Liu, C.-H., 2006. Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap. Lab on a Chip, 6(6), p.724.
[7] Bazant, M.Z. and Squires, T.M., 2011. Induced-Charge Electrokinetic Phenomena. pp.221–297.
[8] Peng, C., Lazo, I., Shiyanovskii, S.V. and Lavrentovich, O.D., 2014. Induced-charge electro-osmosis around metal and Janus spheres in water: Patterns of flow and breaking symmetries. 90(5).
[9] Ren, Y., Liu, W., Liu, J., Tao, Y., Guo, Y. and Jiang, H., 2016. Particle rotational trapping on a floating electrode by rotating induced-charge electroosmosis. Biomicrofluidics, 10(5), p.054103.
[10] Ashkin, A., Dziedzic, J.M. and Yamane, T., 1987. Optical trapping and manipulation of single cells using infrared laser beams. Nature, 330(6150), pp.769–771.
[11] Pethig, R., 1996. Dielectrophoresis: Using Inhomogeneous AC Electrical Fields to Separate and Manipulate Cells. Critical Reviews in Biotechnology, 16(4), pp.331–348.
[12] Muller, T., Fiedler, S., Schnelle, T., Ludwig, K., Jung, H. and Fuhr, G., 1996. High frequency electric fields for trapping of viruses. Biotechnology Techniques, 10(4).
[13] Muller, T., Fiedler, S., Schnelle, T., Ludwig, K., Jung, H. and Fuhr, G., 1996. High frequency electric fields for trapping of viruses. Biotechnology Techniques, 10(4).
[14] Liddle, J.A. and Gallatin, G.M., 2011. Lithography, metrology and nanomanufacturing. Nanoscale, 3(7), p.2679.
[15] Zhao, C. and Yang, C., 2018. Continuous-flow trapping and localized enrichment of micro- and nano-particles using induced-charge electrokinetics. Soft Matter, 14(6), pp.1056–1066.
[16] Ding, H., Liu, W., Shao, J., Ding, Y., Zhang, L. and Niu, J., 2013. Influence of Induced-Charge Electrokinetic Phenomena on the Dielectrophoretic Assembly of Gold Nanoparticles in a Conductive-Island-Basedpp.:12093−12103.
[17] Wu Yupan, Ren, Y., Tao, Y., Hou, L. and Jiang, H., 2016. Large-Scale Single Particle and Cell Trapping based on Rotating Electric Field Induced-Charge Electroosmosis. 88(23), pp.11791–11798.
[18] Ren, Y., Liu, W., Jia, Y., Tao, Y., Shao, J., Ding, Y. and Jiang, H., 2015. Induced-charge electroosmotic trapping of particles. 15(10), pp.2181–2191.
[19] Tao, Y., Ren, Y., Liu, W., Wu Yupan, Jia, Y., Lang, Q. and Jiang, H., 2016. Enhanced particle trapping performance of induced charge electroosmosis. 37(10), pp.1326–1336.
[20] Ren, Y., Liu, J., Liu, W., Lang, Q., Tao, Y., Hu, Q., Hou, L. and Jiang, H., 2016. Scaled particle focusing in a microfluidic device with asymmetric electrodes utilizing induced-charge electroosmosis. Lab on a Chip, 16(15), pp.2803–2812.
[21] Song, Y., Wang, C., Li, M., Pan, X. and Li, D., 2016. Focusing particles by induced charge electrokinetic flow in a microchannel. ELECTROPHORESIS, 37(4), pp.666–675.
[22] Zhao, C. and Yang, C., 2018. Continuous-flow trapping and localized enrichment of micro- and nano-particles using induced-charge electrokinetics. Soft Matter, 14(6), pp.1056–1066.
[23] Ding, H., Liu, W., Shao, J., Ding, Y., Zhang, L. and Niu, J., 2013. Influence of Induced-Charge Electrokinetic Phenomena on the Dielectrophoretic Assembly of Gold Nanoparticles in a Conductive-Island-Based Microelectrode System, pp.12093–103.
[24] Chen, X.-M., Ren, Y., Hou, L., Feng, X., Jiang, T. and Jiang, H., 2019. Microparticle separation using asymmetrical induced-charge electro-osmotic vortices on an arc-edge-based floating electrode. 144(17), pp.5150–5163.
[25] Tavari T, Nazari M, Akbarzadeh P, Sepehry N, Nazari M., 2022. Investigation of electro-osmotic micro-pumps using electrical field gradient and asymmetric micro-electrodes: numerical modeling and experimental validation. Amirkabir journal of mechanical engineering, 54, pp.101–122.
[26] Mottaghi S, Nazari M, Nazari M, Sepehry N, Mahdavi A., 2021. Control of droplet size in a two-phase microchannel using PID controller: A novel experimental study. Amirkabir journal of mechanical engineering, 53, pp.4279–4292.
[27] Baylon-Cardiel, J.L., Jesús-Pérez, N.M., Chávez-Santoscoy, A.V. and Lapizco-Encinas, B.H., 2010. Controlled microparticle manipulation employing low frequency alternating electric fields in an array of insulators. 10(23), pp.3235–3242.
[28] Wu, Z. and Li, D., 2007. Mixing and flow regulating by induced-charge electrokinetic flow in a microchannel with a pair of conducting triangle hurdles. Microfluidics and Nanofluidics, 5(1), pp.65–76.
[29] Wu, Z. and Li, D., 2008. Micromixing using induced-charge electrokinetic flow. Electrochimica Acta, 53(19), pp.5827–5835.
[30] Tavari, T., Nazari, M., Meamardoost, S., Tamayol, A. and Samandari, M., 2022. A systematic overview of electrode configuration in electric‐driven micropumps. Electrophoresis, 43(13-14), pp.1476-1520.
[31] Tavari, T., Meamardoost, S., Sepehry, N., Akbarzadeh, P., Nazari, M., Hashemi, N.N. and Nazari, M., 2023. Effects of 3D electrodes arrangement in a novel AC electroosmotic micropump: Numerical modeling and experimental validation. Electrophoresis, 44(3-4), pp.450-461.
[32] Nazari, M., Rashidi, S., Abolfazli Esfahani, J. and Harmand, S., 2022. A novel electrokinetic micromixing system with conductive mixing-enclosure-A geometrical study. Journal of Heat and Mass Transfer Research, 9(1), pp.65-76.
[33] Nazari, M., Rashidi, S. and Esfahani, J.A., 2020. Effects of flexibility of conductive plate on efficiency of an induced-charge electrokinetic micro-mixer under constant and time-varying electric fields-A comprehensive parametric study. Chemical Engineering Science, 212, p.115335.
[34] Daghighi, Y., Gao, Y. and Li, D., 2011. 3D numerical study of induced-charge electrokinetic motion of heterogeneous particle in a microchannel. Electrochimica acta, 56(11), pp.4254-4262.
[35] Nazari, M., Chuang, P.-Y.A., Abolfazli Esfahani, J. and Rashidi, S., 2020. A comprehensive geometrical study on an induced-charge electrokinetic micromixer equipped with electrically conductive plates. International Journal of Heat and Mass Transfer, 146, p.118892.
[36] Azimi, S., Nazari, M. and Daghighi, Y., 2017. Developing a fast and tunable micro-mixer using induced vortices around a conductive flexible link. Physics of Fluids, 29(3), p.032004.
[37] Nazari, M., Rashidi, S. and Esfahani, J.A., 2019. Mixing process and mass transfer in a novel design of induced-charge electrokinetic micromixer with a conductive mixing-chamber. International Communications in Heat and Mass Transfer, 108, p.104293.