[1] Eiyad Abu-Nada, Ziyad Masoud, Hakan F. Oztop, Antonio Campo, 2010, Effect of Nanofluid variable properties on natural convection in enclosures, Int. Journal of Thermal Sciences, 49, pp.479–491.
[2] Mefteh Bouhalleb, Hassan Abbassi, 2014, Natural convection of nanofluids in enclosures with low aspect ratios, Int. Journal of hydrogen energy, 39, pp.15275-15286.
[3] Bishwajit Sharma, Basant Kumar, Rabindra Nath Barman, 2018, Numerical investigation of cu-water nanofluid in a differentially heated square cavity with conducting solid square cylinder at center, Int. Journal of Heat and Technology, 36(2), pp.714-722.
[4] M. Izadi, R. Mohebbi, D. Karimi, M. A. Sheremet, 2018, Numerical simulation of natural convection heat transfer inside a ┴ shaped cavity filled by a MWCNT-Fe3O4/water hybrid nanofluids using LBM, Chemical Engineering and Processing - Process Intensification, 125, pp. 56-66.
[5] M. Izadi, A. Behzadmehr & M. M. Shahmardan, 2015, Effects of Inclination Angle on Mixed Convection Heat Transfer of a Nanofluid in a Square Cavity, International Journal for Computational Methods in Engineering Science and Mechanics, 16(1), pp.11-21.
[6] M. Izadi, M.M. Shahmardan, A. Behzadmehr, A.M. Rashidi, and A. Amrollahi, 2015, Modeling of Effective Thermal Conductivity and Viscosity of Carbon Structured Nanofluid, Challenges in Nano and Micro Scale Science and Technology, 3(1), pp.1-13.
[7] M. Izadi, M.M. Shahmardan, and A.M. Rashidi, 2013, Study on Thermal and Hydrodynamic Indexes of a Nanofluid Flow in a Micro Heat Sink”, Challenges in Nano and Micro Scale Science and Technology, 1(1), pp. 53-63.
[8] M. Izadi, H. M. Alshehri, F. Hosseinzadeh, M. Shokri Rad, M. Bechir Ben Hamida, 2023, Numerical study on forced convection heat transfer of TiO2/water nanofluid flow inside a double-pipe heat exchanger with spindle-shaped turbulators”, Engineering Analysis with Boundary Elements, 150, pp. 612-623.
[9] M. Izadi, T. Tayebi, H.M. Alshehri, 2023, Transient magneto-buoyant convection of a magnetizable nanofluid inside a circle sensible storage subjected to double time-dependent thermal sources, Journal of Thermal Analysis and Calorimetry, 148, pp. 8511–8531.
[10] Nazia, S, Seshaiah, B, Sudarsana Reddy, P, Sreedevi, P., 2023, Silver–ethylene glycol and copper–ethylene glycol based thermally radiative nanofluid characteristics between two rotating stretchable disks with modified Fourier heat flux, Heat Transfer, 52, pp.289- 316.
[11] P Sudarsana Reddy, and P Sreedevi, 2021, Flow and heat transfer analysis of carbon nanotubes based nanofluid flow inside a cavity with modified Fourier heat flux, Phys. Scr, 96 055215.
[12] M.R. Aminian, A.R. Miroliaei, and B. Mirzaei Ziapour, 2019, Numerical study of flow and heat transfer characteristics of CuO/H2O nanofluid within a mini tube, Journal of Heat and Mass Transfer Research, 6(1), pp.11-20.
[13] S. Kaviany, 1995, Principles of Heat Transfer in Porous Media, Springer-Verlag, NY.
[14] Ling, X.; Yan, Z.; Liu, Y.; Lu, G. 2021, Transport of nanoparticles in porous media and its effects on the co-existing pollutants, Environmental Pollutants, 283, 117098.
[15] G.C. Bourantas, E.D. Skouras, V.C. Loukopoulos, V.N. Burganos, 2014, Heat transfer and natural convection of nanofluids in porous media, European Journal of Mechanics - B/Fluids, 43, pp. 45-56.
[16] Prabir Barman and PS Rao, 2022, Natural convection of nanofluids in a wavy porous cavity, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236(7), pp. 3847-3863.
[17] Basil Mahdi Al-Srayyih, Shian Gao, and Salam Hadi Hussain , 2019, Natural convection flow of a hybrid nanofluid in a square enclosure partially filled with a porous medium using a thermal non-equilibrium model, Physics of Fluids, 31, 043609.
[18] Z. A. S. Raizah and A. M. Aly, 2021, Natural convection in an h-shaped porous enclosure filled with a nanofluid, Computers, Materials & Continua, 66(3), pp. 3233–3251.
[19] S.A.M. Mehryan, M. Ghalambaz, A. J. Chamkha, M. Izadi, 2020, Numerical study on natural convection of Ag–MgO hybrid/water nanofluid inside a porous enclosure: A local thermal non-equilibrium model, Powder Technology, 367, pp. 443-455.
[21] M. Izadi, B. Bastani and M. A. Sheremet, 2020, Numerical simulation of thermogravitational energy transport of a hybrid nanoliquid within a porous triangular chamber using the two-phase mixture approach, Advanced Powder Technology, Vol. 31(6), pp. 2493-2504.
[22] H. Sajjadi, A. A. Delouei, R. Mohebbi, M. Izadi, and S. Succi, 2020, Natural convection heat transfer in a porous cavity with sinusoidal temperature distribution using Cu/Water nanofluid: Double MRT Lattice Boltzmann Method, Communications in Computational Physics, 29(1), pp.292-318.
[23] M. Izadi, R. Mohebbi, A. A. Delouei, H. Sajjadi, 2019, Natural convection of a magnetizable hybrid nanofluid inside a porous enclosure subjected to two variable magnetic fields, International Journal of Mechanical Sciences, 151, pp.154-169.
[24] M. Izadi, B. Alshuraiaan, A. Hajjar, M. A. Sheremet, M. B. Ben Hamida, 2023, Free convection of nanofluids in a porous sensible heat storage unit: Combined effect of time periodic heating and external magnetic field, International Journal of Thermal Sciences, 192 part A.
[25] P. Holmes, J. L. Lumley, G. Berkooz, 1996, Turbulence coherent structures, dynamical systems and symmetry, Cambridge, UK, Cambridge University Press.
[26] Rathinam, Muruhan and Petzold, Linda., 2023, A New Look at Proper Orthogonal Decomposition, SIAM J. Numerical Analysis, 41, pp.1893-1925.
[27] Feng, J. W., Cen, S., Li, C. F., and Owen, D. R. J., 2015, Statistical reconstruction and Karhunen–Loève expansion for multiphase random media, Int. Journal of Numerical Methods in Engineering, 105, pp.3– 32.
[28] Holmes P.J., Lumley J.L., Berkooz G., Mattingly J.C., Wittenberg R. W., 1997, Low-dimensional models of coherent structures in turbulence, Physics Reports, 287(4), pp. 337-384.
[28] Holmes P.J., Lumley J.L., Berkooz G., Mattingly J.C., Wittenberg R. W., 1997, Low-dimensional models of coherent structures in turbulence, Physics Reports, 287(4), pp. 337-384.
[29] Smith, T. R., Moehlis, J., and Holmes, P., 2004, Low-Dimensional Modeling of Turbulence Using the Proper Orthogonal Decomposition: A tutorial”, Kluwer Academic, Boston.
[30] L. Sirovich, M. Kirby, 1987, Low-dimensional procedure for the characterization of human faces, J. Optical Society America, 4(3), 519–24.
[31] T. Lieu, C. Farhat, 2005, Adaptation of POD-based aeroelastic ROMs for varying Mach number and angle of attack: Application to a complete F16 configuration, AIAA Journal.
[32] Li, J., Zhang, T., Sun, S. and Yu, B., 2019, Numerical investigation of the POD reduced-order model for fast predictions of two-phase flows in porous media”, International Journal of Numerical Methods for Heat & Fluid Flow, 29(11), pp. 4167-4204.
[33] Thomas A. Brenner, Raymond L. Fontenot, Paul G.A. Cizmas, Thomas J. O’Brien, Ronald W. Breault, 2012, A reduced-order model for heat transfer in multiphase flow and practical aspects of the proper orthogonal decomposition, Computers & Chemical Engineering, 43, pp. 68-80.
[34] Alexandra Tallet, Cyrille Allery & Cédric Leblond, 2016, Optimal flow control using a POD-based reduced-order model, Numerical Heat Transfer, Part B: Fundamentals, Vol.70(1), pp.1-24.
[35] Li, S., Li, W., & Noack, B., 2022, Machine-learned control-oriented flow estimation for multi-actuator multi-sensor systems exemplified for the fluidic pinball, Journal of Fluid Mechanics, 952, A36.
[36] J. R. Connell, D. Kulasiri, 2007, Computational modeling of turbulent velocity structures for an open channel flow using Karhunen-Loeve expansion, Lincoln University.
[37] T. Bui-Thanh, M. Damodaran, K. E. Willcox, 2004, Aerodynamic data reconstruction and inverse design using proper orthogonal decomposition, AIAA Journal.
[38] R. Bourguet, M. Braza, A. Dervieux, 2011, Reduced-Order modeling of transonic flows around an airfoil submitted to small deformations, Journal of Computational Physics, 230, 159–184.
[39] M.K. Moayyedi, M. Najafbeygi, 2018, A high fidelity cost efficient tensorial method based on combined POD-HOSVD reduced order model of flow field, European Journal of Computational Mechanics, 27(4), 342–366.
[40] Zhendong Luo, 2015, Proper Orthogonal Decomposition-based Reduced-order Stabilized Mixed Finite Volume Element Extrapolating Model for the Non-stationary Incompressible Boussinesq equations, Journal of Mathematical Analysis and Applications, 425(1), pp. 259-280.
[41] M.K. Moayyedi, 2017, Numerical simulation and reduced order modeling of mass transfer due to natural convection based on coupling between temperature and contaminant, Sharif Journal of Mechanical Engineering, 33.3(2), pp.43-52.
[42] M. K. Moayyedi, F. Sabaghzadeghan, 2021, Development of parametric and time dependent reduced order model for diffusion and convection-diffusion problems based on proper orthogonal decomposition method”, Amirkabir Journal of Mechanical Engineering, 53(7), pp. 4241-4260.