[1] Eckert, M., 2021. Pipe flow: a gateway to turbulence. Arch. Hist. Exact Sci., 75, pp. 249–282.
[2] Ekman, V.W., 1911. On the change from steady to turbulent motion of liquids. Ark. Mat. Astron. Fys., 6(12), pp. 1–16.
[3] Pfenniger, W., 1961. Transition in the inlet length of tubes at high Reynolds numbers. In Boundary Layer and Flow Control, ed. GV Lachman, (pp. 970–80), New York: Pergamon.
[4] Kundu, P.K. and Cohen, I.M., 2008. Fluid mechanics. 4th ed.. Kidlington: Academic Press.
[5] Meseguer, A. and Trefethen, L.N., 2003. Linearized pipe flow to Reynolds number 107. J. Comput. Phys., 186 (1), pp. 178-197.
[6] Chandrasekhar, S., 1961. Hydrodynamic and hydromagnetic stability. Clarendon Press.
[7] John M.O., Obrist, D. and Kleiser, L., 2016. Secondary instability and subcritical transition of the leading-edge boundary layer. J. Fluid Mech., 792, pp. 682 – 711.
[8] White, F.M., 2006. Viscous Fluid Flow. 3rd ed. . New York: McGraw-Hill.
[9] Leal, L.G., 2007. Advanced transport phenomena: fluid mechanics and convective transport processes. Cambridge University Press.
[10] Chhabra, R.P. and Richardson, J.F., 2008. Non-Newtonian flow and applied rheology: engineering applications. Oxford: Butterworth-Heinemann.
[11] Draad, A.A., Kuiken, G.D.C. and Nieuwstadt, F.T.M., 1998. Laminar–turbulent transition in pipe flow for Newtonian and non-Newtonian fluids. J. Fluid Mech., 377, pp. 267-312.
[12] Masuda H., Ebata A. and Teramae K., 1993. Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles (Dispersion of Al2O3, SiO2 and TiO2). Netsu Bussei., 7 (4), pp. 227-233.
[13] Pak B.C. and Cho Y.I., 1998. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf., 11, pp. 151-170.
[14] Mirzaee, H., Rafee, R., Rashidi, S. and Valipour, M.S., 2023. Two-phase modeling of low-Reynolds turbulent heat convection of Al2O3-water nanofluid in a 2-D helically corrugated channel. Chemical Engineering Communications, 210(4), pp. 634-654.
[15] Ellahi, R., 2013. The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: Analytical solutions. Applied Mathematical Modelling, 37, pp. 1451–1467.
[16] Majeed, A., Zeeshan, A., Alamri, S.Z. and Ellahi, R., 2018. Heat transfer analysis in ferromagnetic viscoelastic fluid flow over a stretching sheet with suction. Neural Comput. & Applic., 30, pp. 1947-1955.
[17] Shaheen, S., Maqbool, K., Ellahi, R. and Sait, S.M., 2021. Metachronal propulsion of non-Newtonian viscoelastic mucus in an axisymmetric tube with ciliated walls. Commun. Theor. Phys, 73(3), p.035006.
[18] Bhatti, M.M., Ishtiaq, F., Ellahi, R. and Sait, S.M., 2023. Novel Aspects of Cilia-Driven Flow of Viscoelastic Fluid through a Non-Darcy Medium under the Influence of an Induced Magnetic Field and Heat Transfer. Mathematics, 11(10), 2284.
[19] Mehdizadeh, A., Rahmati, A. and Sheikhzadeh, G., 2021. Simulation and comparison of non-Newtonian fluid models using LBM in a cavity. Journal of Heat and Mass Transfer Research, 8(1), pp. 115-125.
[20] Nemati, M., Sefid, M. and Rahmati, A., 2021. Analysis of the effect of periodic magnetic field, heat absorption/generation and aspect ratio of the enclosure on non-Newtonian natural convection. Journal of Heat and Mass Transfer Research, 8(2), pp. 187-203.
[21] Bingham, E.C., 1922. Fluidity and plasticity. McGraw-Hill.
[22] Mase, G.E., 1970. Schaum’s Outline of Theory and Problems of Continuum mechanics. New York: McGraw-Hill.
[23] Bird, R.B., Armstrong, R.C. and Hassager, O., 1987. Dynamics of polymeric liquids, Vol. 1: Fluid mechanics. John Wiley & Sons.
[24] Drazin, P.G. and Reid, W.H., 2004. Hydrodynamic stability. Cambridge university press.
[25] Escudier, M., 2017. Introduction to Engineering Fluid Mechanics, 1st ed., Oxford University Press.
[26] Romanov, V.A., 1972. Stability of plane-parallel Couette flow. Funct. Anal. Applics., 7, pp. 137–146.
[27] Graebel, W. P., 1964. The hydrodynamic stability of a Bingham fluid in Couette flow. In M. Reiner & D. Abir (Eds.), Proceedings of International Symposium on 2nd Order Effects in Elasticity, Plasticity and Fluid Dynamics, Haifa, Israel, April 23–27, 1962, (pp. 636–649), New York: Macmillan.
[28] Landry, M. P., Frigaard, I. A. and Martinez, D. M., 2006. Stability and instability of Taylor–Couette flows of a Bingham fluid. J. Fluid Mech., 560, pp. 321-353.
[29] Orszag, S. A., 1971. Accurate solution of the Orr-Sommerfeld stability equation. J. Fluid Mech., 50(4), pp. 689-703.
[30] Frigaard, I.A., Howison, S.D. and Sobey, I.J., 1994. On the stability of Poiseuille flow of a Bingham fluid. J. Fluid Mech., 263, pp. 133-150.
[31] Davey, A. and Drazin, P.G., 1969. The stability of Poiseuille flow in a pipe. J. Fluid Mech., 36, pp. 209-218.
[32] Schmid, P.J. and Henningson, D.S., 2001. Stability and Transition in Shear Flows. New York: Springer.
[33] Chapman, S.J., 2002. Subcritical transition in channel flows. J. Fluid Mech., 451, pp. 35-97.
[34] Nouar, C. and Frigaard, I.A., 2001. Nonlinear stability of Poiseuille flow of a Bingham fluid: theoretical results and comparison with phenomenological criteria. J. Non-Newton. Fluid Mech., 100, pp. 127–149.
[35] Park, J.T., Mannheimer, R.J., Grimley, T. A. and Morrow, T.B., 1989. Pipe flow measurements of a transparent non-Newtonian slurry. J. Fluids Eng., 111(3), pp. 331-336.
[36] Escudier, M. P. and Presti, F., 1996. Pipe flow of a thixotropic liquid. J. Non-Newton. Fluid Mech., 62(2-3), pp. 291-306.
[37] Frigaard, I.A. and Nouar, C., 2003, April. Predicting Transition to Turbulence in Well Construction Flows, In SPE Latin American and Caribbean Petroleum Engineering Conference, Port-of-Spain, Trinidad and Tobago.
[38] Hanks, R. W., 1963. The laminar-turbulent transition for fluids with a yield stress. A.I.Ch.E. (Am. Inst. Chem. Engrs.) J., 9, TID-16087.
[39] Hanks, R. W., 1967. On the flow of Bingham plastic slurries in pipes and between parallel plates. Soc. Pet. Eng. J., 7(04), pp. 342-346.
[40] Hedström, B.O., 1952. Flow of plastic materials in pipes. Ind. Eng. Chem., 44(3), pp. 651-656.
[41] Frigaard, I.A. and Nouar, C., 2003. On three-dimensional linear stability of Poiseuille flow of Bingham fluids. Phys. Fluids, 15, 2843.
[42] Peixinho, J., Nouar, C., Desaubry, C. and Théron, B., 2005. Laminar transitional and turbulent flow of yield stress fluid in a pipe. J. Non-Newton. Fluid Mech., 128(2-3), pp. 172-184.
[43] Cross, M.M., 1965. Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems. J. colloid sci., 20(5), pp. 417-437.
[44] Nouar, C., Kabouya, N., Dusek, J. and Mamou, M., 2007. Modal and non-modal linear stability of the plane Bingham–Poiseuille flow. J. Fluid Mech., 577, pp. 211-239.
[45] Esmael, A. and Nouar, C., 2008. Transitional flow of a yield-stress fluid in a pipe: Evidence of a robust coherent structure. Phys. Rev. E, 77(5), 057302.
[46] Guzel, B., Burghelea, T., Frigaard, I.A. and Martinez, D.M., 2009. Observation of laminar–turbulent transition of a yield stress fluid in Hagen–Poiseuille flow. J. Fluid Mech., 627, pp. 97–128.
[47] Liu, R. and Liu, Q. S., 2014. Non-modal stability in Hagen-Poiseuille flow of a Bingham fluid. Phys. Fluids, 26(1), 014102.
[48] Bentrad, H., Esmael, A., Nouar, C., Lefevre, A. and Ait-Messaoudene, N., 2017. Energy growth in Hagen–Poiseuille flow of Herschel–Bulkley fluid. J. Non-Newton. Fluid Mech., 241, pp. 43-59.
[49] Singh, J., Rudman, M., Blackburn, H.M., 2017. The effect of yield stress on pipe flow turbulence for generalised Newtonian fluids. J. Non-Newton. Fluid Mech., 249, pp. 53-62.
[50] Mitishita, R.S., MacKenzie, J. A., Elfring, G.J. and Frigaard, I.A., 2021. Fully turbulent flows of viscoplastic fluids in a rectangular duct. J. Non-Newton. Fluid Mech., 293, 104570.
[51] Tanner, R.I., 2000. Engineering rheology. 2nd ed. Oxford University Press.
[52] Dubief, Y., Terrapon, V. E. and Hof, B., 2023. Elasto-inertial turbulence. Annu. Rev. Fluid Mech., 55.
[53] Lee, K.-C. and Finlayson, B.A., 1986. Stability of plane Poiseuille and Couette flow of a Maxwell fluid. J. Non-Newton. Fluid Mech., 21 (1), pp. 65–78.
[54] Renardy, M. and Renardy, Y., 1986. Linear stability of plane Couette flow of an upper convected Maxwell fluid. J. Non-Newton. Fluid Mech., 22, pp. 23–33.
[55] Porteous, K.C. and Denn, M.M., 1972. Linear stability of plane Poiseuille flow of viscoelastic liquids. Trans. Soc. Rheol., 16 (2), pp. 295–308.
[56] Ho, T.C. and Denn, M.M., 1977. Stability of plane Poiseuille flow of a highly elastic liquid. J. Non Newton. Fluid Mech., 3 (2), pp. 179–195.
[57] Hansen, R., 1973. Stability of laminar pipe flows of drag reducing polymer solutions in the presence of high-phase-velocity disturbances. AIChE J., 19 (2), pp. 298–304.
[58] Kupferman, R., 2005. On the linear stability of plane Couette flow for an Oldroyd-B fluid and its numerical approximation. J. Non-Newton. Fluid Mech., 127, pp. 169–190.
[59] Sureshkumar, R. and Beris, A.N., 1995b. Linear stability analysis of viscoelastic Poiseuille flow using an Arnoldi-based orthogonalization algorithm. J. Non-Newton. Fluid Mech., 56 (2), pp. 151–182.
[60] Escudier, M.P., Presti, F. and Smith, S., 1999. Drag reduction in the turbulent pipe flow of polymers. J. non-Newton. Fluid Mech., 81(3), pp. 197-213.
[61] Atalik, K. and Keunings, R., 2002. Non-linear temporal stability analysis of viscoelastic plane channel flows using a fully-spectral method. J. Non-Newton. Fluid Mech., 102, pp. 299-319.
[62] Govindarajan, R., L’vov, V.S., Procaccia, I. and Sameen, A., 2003. Stabilization of Hydrodynamic Flows by Small Viscosity Variations. Phys. Rev. E, 67, 026310.
[63] Meulenbroek, B., Storm, C., Morozov, A.N. and van Saarloos, W., 2004. Weakly nonlinear subcritical instability of visco-elastic Poiseuille flow. J. Non-Newton. Fluid Mech., 116, pp. 235-268.
[64] Morozov, A.N. and Van Saarloos, W., 2007. An introductory essay on subcritical instabilities and the transition to turbulence in visco-elastic parallel shear flows. Physics Reports, 447, pp. 112–143.
[65] Hoda, N., Jovanovic, M.R. and Kumar, S., 2008. Energy amplification in channel flows of viscoelastic fluids. J. Fluid Mech., 601, pp. 407- 424.
[66] Xi, L. and Graham, M. D., 2010. Turbulent drag reduction and multistage transitions in viscoelastic minimal flow units. J. Fluid Mech., 647, pp. 421-452.
[67] Zhang, M., Lashgari, I., Zaki, T.A. and Brandt, L., 2013. Linear stability analysis of channel flow of viscoelastic Oldroyd-B and FENE-P fluids. J. Fluid Mech., 737, pp. 249-279.
[68] Samanta, D., Dubief, Y., Holzner, M., Schäfer, C., Morozov, A. N., Wagner, C. and Hof, B., 2013. Elasto-inertial turbulence. PNAS, 110 (26), pp. 10557-10562.
[69] Garg, P., Chaudhary, I., Khalid, M., Shankar, V. and Subramanian, G., 2018. Viscoelastic Pipe Flow is Linearly Unstable. Phys. Rev. Lett., 121, 024502.
[70] Page, J., Dubief, Y. and Kerswell, R.R., 2020. Exact Traveling Wave Solutions in Viscoelastic Channel Flow. Phys. Rev. Lett., 125, 154501.
[71] Morozov, A. and Van Saarloos, W., 2019. Subcritical instabilities in plane Poiseuille flow of an Oldroyd-B fluid. J. Stat. Phys., 175, pp. 554-577.
[72] Shekar, A., McMullen, R. M., McKeon, B. J. and Graham, M.D., 2020. Self-sustained elastoinertial Tollmien–Schlichting waves. J. Fluid Mech., 897, A3.
[73] Chaudhary, I., Garg, P., Subramanian, G. and Shankar, V., 2021. Linear instability of viscoelastic pipe flow. J. Fluid Mech., 908, A11.
[74] Chandra, B., Shankar, V. and Das, D., 2018. Onset of transition in the flow of polymer solutions through microtubes. J. Fluid Mech., 844, pp. 1052-1083.
[75] Wan, D., Sun, G. and Zhang, M., 2021. Subcritical and supercritical bifurcations in axisymmetric viscoelastic pipe flows. J. Fluid Mech., 929, A16.
[76] Sánchez, H.A.C., Jovanović, M.R., Kumar, S., Morozov, A., Shankar, V., Subramanian, G. and Wilson, H.J., 2022. Understanding viscoelastic flow instabilities: Oldroyd-B and beyond. J. Non-Newton. Fluid Mech., 302, 104742.
[77] Buza, G., Page, J. and Kerswell, R.R., 2022. Weakly nonlinear analysis of the viscoelastic instability in channel flow for finite and vanishing Reynolds numbers. J. Fluid Mech., 940, p. A11.
[78] Dong, M. and Zhang, M., 2022. Asymptotic study of linear instability in a viscoelastic pipe flow. J. Fluid Mech., 935, A28.
[79] Datta, S.S., Ardekani, A.M., Arratia, P.E., Beris, A.N., Bischofberger, I., McKinley, G.H., Eggers, J.G., López-Aguilar, J.E., Fielding, S.M., Frishman, A. and Graham, M.D., 2022. Perspectives on viscoelastic flow instabilities and elastic turbulence. Phys. Rev. Fluids, 7(8), p.080701.