Thermo-Hydraulic Performance of Tube Type Heat Exchanger with Semi-Circular Cut Twisted Tape Insert: A Numerical Exploration

Document Type : Full Lenght Research Article

Authors

Department of Mechanical Engineering MANIT Bhopal, 462003, India

Abstract

The present study aimed to investigate the effects of the semi-circular cut twisted tape insert in tube type heat exchangers. The study selected twist ratios of 4.5, 5.5, and 6.5mm, and cut diameters of 5mm, 8mm, and 11mm. The Reynolds number ranged from 4000-16000. The study quantitatively demonstrated the impacts of cut diameter and twist ratio in terms of Nusselt number, friction factor, and thermal performance factor. The aforementioned output parameters were employed as metrics to assess the efficacy of the twisted tape insert. The obtained results reveal that smaller twist generates extra swirl which intensifies heat transfer. Also, as the diameter of the cut increases Nusselt number increases. In a quantitative analysis, it was observed that when Re=4000, the plain twisted tapes with y=4.5, 5.5, and 6.5 exhibited maximum thermal performance factors of 1.36, 1.32, and 1.21, respectively. On the other hand, for the modified twisted tapes (having a cut diameter of 11mm), the values were higher, measuring 1.84, 1.77, and 1.68 for the same respective ‘y’ values.

Keywords

Main Subjects


[1]    Wijayanta, A.T., Yaningsih, I., Aziz, M., Miyazaki, T. and Koyama, S., 2018. Double-sided delta-wing tape inserts to enhance convective heat transfer and fluid flow characteristics of a double-pipe heat exchanger. Applied Thermal Engineering, 145, pp.27-37. doi: 10.1016/j.applthermaleng.2018.09.009.
[2]    Abbasian Arani, A.A., Arefmanesh, A., and Uosofvand, H., 2017. Effect of baffle orientation on shell-and-tube heat exchanger performance. Journal of Heat and Mass Transfer Research, vol. 4, pp. 83–90, doi: 10.22075/jhmtr.2017.1577.1104
[3]    Wijayanta, A.T., Mirmanto and Aziz, M., 2020. Heat transfer augmentation of internal flow using twisted tape insert in turbulent flow. Heat transfer engineering, 41(14), pp.1288-1300.
[4]    Wijayanta, A.T., Yaningsih, I., Juwana, W.E., Aziz, M. and Miyazaki, T., 2020. Effect of wing-pitch ratio of double-sided delta-wing tape insert on the improvement of convective heat transfer. International Journal of Thermal Sciences, 151, p.106261.
[5]    Murali, G., Nagendra, B. and Jaya, J., 2020. CFD analysis on heat transfer and pressure drop characteristics of turbulent flow in a tube fitted with trapezoidal-cut twisted tape insert using Fe3O4 nano fluid. Materials Today: Proceedings, 21, pp.313-319.doi: 10.1016/j.matpr.2019.05.451.
[6]    Prasad, P.D., Gupta, A.V.S.S.K.S. and Deepak, K., 2015. Investigation of trapezoidal-cut twisted tape insert in a double pipe u-tube heat exchanger using Al2O3/water nanofluid. Procedia Materials Science, 10, pp.50-63. doi: 10.1016/j.mspro.2015.06.025.
[7]    Yaningsih, I., Wijayanta, A.T., Miyazaki, T. and Koyama, S., 2018, February. V-cut twisted tape insert effect on heat transfer enhancement of single phase turbulent flow heat exchanger. In AIP Conference Proceedings (Vol. 1931, No. 1). AIP Publishing. doi: 10.1063/1.5024097.
[8]    Sanjay Kumar Singh & Arvind Kumar, “Experimental Study of Heat Transfer Enhancement from Dimpled Twisted Tape in Double Pipe Heat Exchanger,” Int. J. Mech. Prod.  Eng. Res. Dev., vol. 10, no. 1, pp. 469–482, 2020, [Online]. Available: http://www.tjprc.org/view-archives.php?page=132&keyword=&from_date=&to_date=&id=67&jtype=2&journal=67
[9]    Diwaker, M.K. and Kumar, A., 2023. Impact of cut diameter on thermohydraulic performance of DPHE: an experimental analysis using internet of things (IoT) approach. Heat and Mass Transfer, pp.1-12. doi: 10.1007/s00231-023-03418-z.
[10] Diwaker, M.K. and Kumar, A., 2023. Thermohydraulic performance of DPHE affected by triangular and semi-circular cut size on insert: IoT-based experimentation. Case Studies in Thermal Engineering, 43, p.102796. doi: 10.1016/j.csite.2023.102796.
[11] Rezaei, A. and Baniamerian, Z., 2021. Hydro-thermal performance evaluation of nanofluids flow in double pipe heat exchanger: Effects of inner pipe cross section, circular or cam-shaped. Journal of Heat and Mass Transfer Research, 8(2), pp.283-299. doi: 10.22075/JHMTR.2021.22159.1327.
[12] Yaningsih, I. and Wijayanta, A.T., 2017. Influences of pitch-length louvered strip insert on thermal characteristic in concentric pipe heat exchanger. In MATEC Web of Conferences, Vol. 101, p. 03014). EDP Sciences. doi: 10.1051/matecconf/201710103014.
[13] Akbarzadeh, M., Rashidi, S., Keshmiri, A. and Shokri, N., 2020. The optimum position of porous insert for a double-pipe heat exchanger based on entropy generation and thermal analysis. Journal of Thermal Analysis and Calorimetry, 139, pp.411-426. doi: 10.1007/s10973-019-08362-x.
[14] Soltani, M.M., Gorji-Bandpy, M., Vaisi, A. and Moosavi, R., 2022. Heat transfer augmentation in a double-pipe heat exchanger with dimpled twisted tape inserts: an experimental study. Heat and Mass Transfer, 58(9), pp.1591-1606. doi: 10.1007/s00231-022-03189-z.
[15] Dandoutiya, B.K. and Kumar, A., 2021. CFD analysis for the performance improvement of a double pipe heat exchanger with twisted tape having triangular cut. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, pp.1-19. doi: 10.1080/15567036.2021.1946215.
[16] Wijayanta, A.T., Kristiawan, B., Pranowo, Premono, A. and Aziz, M., 2019. Computational Fluid Dynamics Analysis of an Enhanced Tube with Backward Louvered Strip Insert. Energies, 12(17), p.3370.
[17] Wijayanta, A.T., Pranowo, Mirmanto, Kristiawan, B. and Aziz, M., 2019. Internal flow in an enhanced tube having square-cut twisted tape insert. Energies, 12(2), p.306.
[18] Arasteh, H., Salimpour, M.R. and Tavakoli, M.R., 2019. Optimal distribution of metal foam inserts in a double-pipe heat exchanger. International Journal of Numerical Methods for Heat & Fluid Flow, 29(4), pp.1322-3142.
[19] Azmi, W.H., Sharma, K.V., Mamat, R. and Anuar, S., 2014. Turbulent forced convection heat transfer of nanofluids with twisted tape insert in a plain tube. Energy procedia, 52, pp.296-307.
[20] Eiamsa-Ard, S., Ruengpayungsak, K., Thianpong, C., Pimsarn, M. and Chuwattanakul, V., 2019. Parametric study on thermal enhancement and flow characteristics in a heat exchanger tube installed with protruded baffle bundles. International Journal of Thermal Sciences, 145, p.106016. doi: 10.1016/j.ijthermalsci.2019.106016.
[21] Esmaeilzadeh, A., Amanifard, N. and Deylami, H.M., 2017. Comparison of simple and curved trapezoidal longitudinal vortex generators for optimum flow characteristics and heat transfer augmentation in a heat exchanger. Applied Thermal Engineering, 125, pp.1414-1425. doi: 10.1016/j.applthermaleng.2017.07.115.
[22] Saravanan, A. and Jaisankar, S., 2019. Heat transfer augmentation techniques in forced flow V-trough solar collector equipped with V-cut and square cut twisted tape. International Journal of Thermal Sciences, 140, pp.59-70. doi: 10.1016/j.ijthermalsci.2019.02.030.
[23] Han, H., Li, B. and Shao, W., 2014. Multi-objective optimization of outward convex corrugated tubes using response surface methodology. Applied thermal engineering, 70(1), pp.250-262. doi: 10.1016/j.applthermaleng.2014.05.016.
[24] García, A., Solano, J.P., Vicente, P.G. and Viedma, A., 2012. The influence of artificial roughness shape on heat transfer enhancement: Corrugated tubes, dimpled tubes and wire coils. Applied Thermal Engineering, 35, pp.196-201. doi: 10.1016/j.applthermaleng.2011.10.030.
[25] Moya-Rico, J.D., Molina, A.E., Belmonte, J.F., Tendero, J.C. and Almendros-Ibáñez, J.A., 2020. Experimental characterization of a double tube heat exchanger with inserted twisted tape elements. Applied Thermal Engineering, 174, p.115234. doi: 10.1016/j.applthermaleng.2020.115234.
[26] Bhuiya, M.M.K., Roshid, M.M., Talukder, M.M.M., Rasul, M.G. and Das, P., 2020. Influence of perforated triple twisted tape on thermal performance characteristics of a tube heat exchanger. Applied Thermal Engineering, 167, p.114769. doi: 10.1016/j.applthermaleng.2019.114769.
[27] Nakhchi, M.E. and Esfahani, J.A., 2019. Numerical investigation of rectangular-cut twisted tape insert on performance improvement of heat exchangers. International Journal of Thermal Sciences, 138, pp.75-83. doi: 10.1016/j.ijthermalsci.2018.12.039.
[28] Salem, M.R., Eltoukhey, M.B., Ali, R.K. and Elshazly, K.M., 2018. Experimental investigation on the hydrothermal performance of a double-pipe heat exchanger using helical tape insert. International Journal of Thermal Sciences, 124, pp.496-507. doi: 10.1016/j.ijthermalsci.2017.10.040.
[29] Patel, B.V., Sarviya, R.M. and Rajput, S.P.S., 2022. Numerical investigations for the performance improvement of a tubular heat exchanger with anti-clockwise clockwise twisted tape inserts. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(2), pp.4381-4397. doi: 10.1080/15567036.2022.2075993.
[30] Yadav, V., Baghel, K., Kumar, R. and Kadam, S.T., 2016. Numerical investigation of heat transfer in extended surface microchannels. International Journal of Heat and Mass Transfer, 93, pp.612-622. doi: 10.1016/j.ijheatmasstransfer.2015.10.023.
[31] Muñoz-Esparza, D. and Sanmiguel-Rojas, E., 2011. Numerical simulations of the laminar flow in pipes with wire coil inserts. Computers & Fluids, 44(1), pp.169-177. doi: 10.1016/j.compfluid.2010.12.034.
[32] Karakaya, H. and Durmuş, A., 2013. Heat transfer and exergy loss in conical spring turbulators. International Journal of Heat and Mass Transfer, 60, pp.756-762. doi: 10.1016/j.ijheatmasstransfer.2013.01.054.
[33] Nakhchi, M.E., Hatami, M. and Rahmati, M., 2020. Experimental investigation of heat transfer enhancement of a heat exchanger tube equipped with double-cut twisted tapes. Applied Thermal Engineering, 180, p.115863. doi: 10.1016/j.applthermaleng.2020.115863.
[34] Sheikholeslami, M., Ganji, D.D. and Gorji-Bandpy, M., 2016. Experimental and numerical analysis for effects of using conical ring on turbulent flow and heat transfer in a double pipe air to water heat exchanger. Applied Thermal Engineering, 100, pp.805-819. doi: 10.1016/j.applthermaleng.2016.02.075.
[35] Sheikholeslami, M. and Ganji, D.D., 2016. Heat transfer improvement in a double pipe heat exchanger by means of perforated turbulators. Energy Conversion and management, 127, pp.112-123.
[36] Salem, M.R., 2020. Experimental investigation on the hydrothermal attributes of MWCNT/water nanofluid in the shell-side of shell and semi-circular tubes heat exchanger. Applied Thermal Engineering, 176, p.115438.
[37] Eiamsa-Ard, S. and Seemawute, P., 2012. Decaying swirl flow in round tubes with short-length twisted tapes. International Communications in Heat and Mass Transfer, 39(5), pp.649-656.
[38] Maddah, H., Aghayari, R., Mirzaee, M., Ahmadi, M.H., Sadeghzadeh, M. and Chamkha, A.J., 2018. Factorial experimental design for the thermal performance of a double pipe heat exchanger using Al2O3-TiO2 hybrid nanofluid. International Communications in Heat and Mass Transfer, 97, pp.92-102. doi: 10.1016/j.icheatmasstransfer.2018.07.002.
[39] Oni, T.O. and Paul, M.C., 2016. Numerical investigation of heat transfer and fluid flow of water through a circular tube induced with divers' tape inserts. Applied Thermal Engineering, 98, pp.157-168. doi: 10.1016/j.applthermaleng.2015.12.039.
[40] Vashistha, C., Patil, A.K. and Kumar, M., 2016. Experimental investigation of heat transfer and pressure drop in a circular tube with multiple inserts. Applied Thermal Engineering, 96, pp.117-129. doi: 10.1016/j.applthermaleng.2015.11.077.
[41] Guo, J., Fan, A., Zhang, X. and Liu, W., 2011. A numerical study on heat transfer and friction factor characteristics of laminar flow in a circular tube fitted with center-cleared twisted tape. International Journal of Thermal Sciences, 50(7), pp.1263-1270. doi: 10.1016/j.ijthermalsci.2011.02.010.
[42] Ponnada, S., Subrahmanyam, T. and Naidu, S.V., 2019. A comparative study on the thermal performance of water in a circular tube with twisted tapes, perforated twisted tapes and perforated twisted tapes with alternate axis. International Journal of Thermal Sciences, 136, pp.530-538. doi: 10.1016/j.ijthermalsci.2018.11.008.
[43] Noorbakhsh, M., Ajarostaghi, S.S.M., Zaboli, M. and Kiani, B., 2022. Thermal analysis of nanofluids flow in a double pipe heat exchanger with twisted tapes insert in both sides. Journal of Thermal Analysis and Calorimetry, 147(5), pp.3965-3977.
[44] Chu, W.X., Tsai, C.A., Lee, B.H., Cheng, K.Y. and Wang, C.C., 2020. Experimental investigation on heat transfer enhancement with twisted tape having various V-cut configurations. Applied Thermal Engineering, 172, p.115148. doi: 10.1016/j.applthermaleng.2020.115148.
[45] Murugesan, P., Mayilsamy, K. and Suresh, S., 2010. Heat transfer and friction factor studies in a circular tube fitted with twisted tape consisting of wire-nails. Chinese Journal of Chemical Engineering, 18(6), pp.1038-1042. doi: 10.1016/S1004-9541(09)60166-X.
[46] Maddah, H., Aghayari, R., Farokhi, M., Jahanizadeh, S. and Ashtary, K., 2014. Effect of twisted-tape turbulators and nanofluid on heat transfer in a double pipe heat exchanger. Journal of Engineering, 2014. doi: 10.1155/2014/920970.
[47] Patel, B.V., Sarviya, R.M. and Rajput, S.P.S., 2022. Numerical investigations for the performance improvement of a tubular heat exchanger with anti-clockwise clockwise twisted tape inserts. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(2), pp.4381-4397.
[48] Dandoutiya, B.K. and Kumar, A., 2022. W-cut twisted tape's effect on the thermal performance of a double pipe heat exchanger: a numerical study. Case Studies in Thermal Engineering, 34, p.102031.
[49] Nakhchi, M.E. and Rahmati, M.T., 2021. Entropy generation of turbulent Cu–water nanofluid flows inside thermal systems equipped with transverse-cut twisted turbulators. Journal of Thermal Analysis and Calorimetry, 143(3), pp.2475-2484. doi: 10.1007/s10973-020-09960-w.
[50] Murugesan, P., Mayilsamy, K., Suresh, S. and Srinivasan, P.S.S., 2011. Heat transfer and pressure drop characteristics in a circular tube fitted with and without V-cut twisted tape insert, Int. Commun. Heat Mass Transf., vol. 38, no. 1, pp. 329-334, doi: 10.1016/j.icheatmasstransfer.2010.11.010.
[51] Bhuiya, M.M.K., Chowdhury, M.S.U., Saha, M. and Islam, M.T., 2013. Heat transfer and friction factor characteristics in turbulent flow through a tube fitted with perforated twisted tape inserts. International Communications in Heat and Mass Transfer, 46, pp.49-57. doi: 10.1016/j.icheatmasstransfer.2013.05.012.