Analysis of MHD Thermosolutal Convection in a Porous Cylindrical Cavity Filled with a Casson Nanofluid, Considering Soret and Dufour Effects

Document Type : Full Lenght Research Article

Authors

1 Department of Physics, Team of Modeling and Simulation in Mechanics and Energetics (MSME), Faculty of Sciences, Mohammed V University in Rabat, Morocco

2 Labo of Mechanics, University of Hassan II of Casablanca, Faculty of Sciences, Morocco

Abstract

The aim of this work is to numerically and theoretically model thermosolute natural convection in porous, isotropic and saturated media filled with Casson nanofluids (aluminum nanoparticles) under the influence of a magnetic field. Calculations were performed for various parameters relevant to our model, namely Casson fluid parameters (between 0.1 and 1), thermal Rayleigh number (between 10 and 100000), Geometric aspect ratio number (between 1 and 3),Buoyancy ratio number (between 1 and 10), Soret and Dufour numbers (between 0.2 and 1.2), conductivity ratios (between 1 and 3) and Hartmann numbers (between 0 and 100). The horizontal walls of the enclosure maintain uniform temperature and concentration, while the side walls are rigid, watertight, and insulated. Casson nanofluid flow occurs in porous layers and is described by the extended Darcy law of Brinkman-Forchheimer. The finite volume method was used to spatially discretize the obtained system of equations. Therefore, we investigated the effect of different parameters on the heat transfer rate and concentration. we observe that heat and mass transfer increases with increasing Casson fluid parameter; this increase is significant for the case of β between 0.1 and 0.4. And it also increases with the increase in the number of thermal conductivity ratios, the number of thrust ratios and with the increase in the thermal Rayleigh number. The latter remain unchanged when the thermal Rayleigh number is below the threshold     . In the Opposite, we notice an uneven decrease in the thermosolutal transfer with the increase in the Hartmann Soret and Dufour numbers.

Keywords

Main Subjects


  1. Animasaun, I.L., 2016. Double diffusive unsteady convective micropolar flow past a vertical porous plate moving through binary mixture using modified Boussinesq approximation. Ain Shams Engineering Journal, 7(2), pp.755-765.
  2. El Hamma, M., Taibi, M., Rtibi, A., Gueraoui, K. and Bernatchou, M., 2022. Effect of magnetic field on thermosolutal convection in a cylindrical cavity filled with nanofluid, taking into account Soret and Dufour effects. JP Journal of Heat and Mass Transfer, 26, pp. 1-26. http://dx.doi.org/10.17654/0973576322009
  3. Chen, S., Yang, B., Luo, K.H., Xiong, X. and Zheng, C., 2016. Double diffusion natural convection in a square cavity filled with nanofluid. International Journal of Heat and Mass Transfer, 95, pp.1070-1083.
  4. El Hamma, M., Rtibi, A., Taibi, M., Gueraoui, K., Bernatchou, M., Theoretical and Numerical Study of Thermosolutal Convection in a Cylindrical Porous Cavity Filled with a Nanofluid and Taking into Account Soret and Dufour Effects. International Journal on Engineering Applications (I.R.E.A.), 10, (1) DOI: https://doi.org/10.15866/irea.v10i1.20809
  5. Hirpho, M. and Ibrahim, W., 2022. Modeling and simulation of hybrid Casson nanofluid mixed convection in a partly heated trapezoidal enclosure. International Journal of Thermofluids, 15, p. 100166. https://doi.org/10.1016/j.ijft.2022.100166
  6. Shah, I.A., Bilal, S., Noeiaghdam, S., Fernandez-Gamiz, U. and Shahzad, H., 2022. Thermosolutal natural convection energy transfer in magnetically influenced casson fluid flow in hexagonal enclosure with fillets. Results in Engineering, 15, p.100584.
  7. Alwawi, F.A., Alkasasbeh, H.T., Rashad, A.M. and Idris, R., 2020. MHD natural convection of Sodium Alginate Casson nanofluid over a solid sphere. Results in physics, 16, p.102818.
  8. Gbadeyan, J.A., Titiloye, E.O. and Adeosun, A.T., 2020. Effect of variable thermal conductivity and viscosity on Casson nanofluid flow with convective heating and velocity slip. Heliyon, 6(1). https://doi.org/10.1016/j.heliyon.2019.e03076
  9. Haq, R.U., Nadeem, S., Khan, Z.H. and Okedayo, T.G., 2014. Convective heat transfer and MHD effects on Casson nanofluid flow over a shrinking sheet. Central European Journal of Physics, 12, pp.862-871.
  10. Ibrahim, W. and Anbessa, T., 2020. Three-dimensional MHD mixed convection flow of Casson nanofluid with hall and ion slip effects. Mathematical Problems in Engineering, 2020, pp.1-15.
  11. Kumar, K.G., Gireesha, B.J., Krishnamurthy, M.R. and Prasannakumara, B.C., 2018. Impact of convective condition on Marangoni convection flow and heat transfer in Casson nanofluid with uniform heat source sink. Journal of Nanofluids, 7(1), pp.108-114.
  12. Nadeem, S., Haq, R.U. and Akbar, N.S., 2013. MHD three-dimensional boundary layer flow of Casson nanofluid past a linearly stretching sheet with convective boundary condition. IEEE Transactions on Nanotechnology, 13(1), pp.109-115.
  13. Imtiaz, M., Hayat, T. and Alsaedi, A., 2016. Mixed convection flow of Casson nanofluid over a stretching cylinder with convective boundary conditions. Advanced Powder Technology, 27(5), pp.2245-2256.
  14. Khan, M.I., Ahmad Khan, S., Hayat, T., Waqas, M. and Alsaedi, A., 2020. Modeling and numerical simulation for flow of hybrid nanofluid (SiO2/C3H8O2) and (MoS2/C3 H 8O2) with entropy optimization and variable viscosity. International Journal of Numerical Methods for Heat & Fluid Flow, 22(8), pp.3939-3955. DOI 10.1108/HFF-10-2019-0756
  15. Alsabery, A.I., Chamkha, A.J., Saleh, H. and Hashim, I., 2017. Natural convection flow of a nanofluid in an inclined square enclosure partially filled with a porous medium. Scientific reports, 7(1), p.2357.
  16. Khan, S.A., Hayat, T., Alsaedi, A. and Ahmad, B., 2021. Melting heat transportation in radiative flow of nanomaterials with irreversibility analysis. Renewable and Sustainable Energy Reviews, 140, p.110739. https://doi.org/10.1016/j.rser.2021.110739.
  17. Sheremet, M.A., Pop, I. and Ishak, A., 2015. Double-diffusive mixed convection in a porous open cavity filled with a nanofluid using Buongiorno’s model. Transport in Porous Media, 109(1), pp.131-145.
  18. Hayat, T., Khan, S.A., Alsaedi, A. and Fardoun, H.M., 2020. Heat transportation in electro-magnetohydrodynamic flow of Darcy-Forchheimer viscous fluid with irreversibility analysis. Physica Scripta, 95(10), p.105214. DOI 10.1088/1402-4896/abb7aa
  19. Miroshnichenko, I.V., Sheremet, M.A., Oztop, H.F. and Al-Salem, K., 2016. MHD natural convection in a partially open trapezoidal cavity filled with a nanofluid. International Journal of Mechanical Sciences, 119, pp.294-302. http://dx.doi.org/10.1016/j.ijmecsci.2016.11.001
  20. Khan, S.A., Hayat, T. and Alsaedi, A., 2022. Simultaneous features of Soret and Dufour in entropy optimized flow of Reiner-Rivlin fluid considering thermal radiation. International Communications in Heat and Mass Transfer, 137, p.106297. https://doi.org/10.1016/j.icheatmasstransfer.2022.106297
  21. Basak, T., Roy, S., Matta, A. and Pop, I., 2010. Analysis of heatlines for natural convection within porous trapezoidal enclosures: effect of uniform and non-uniform heating of bottom wall. International Journal of Heat and Mass Transfer, 53(25-26), pp. 5947-5961.
  22. Kairi, R.R., Roy, S. and Raut, S., 2023. Stratified thermosolutal Marangoni bioconvective flow of gyrotactic microorganisms in Williamson nanofluid. European Journal of Mechanics-B/Fluids, 97, pp.40-52. https://doi.org/10.1016/j.euromechflu.2022.09.004
  23. Kairi, R.R., Shaw, S., Roy, S. and Raut, S., 2021. Thermosolutal marangoni impact on bioconvection in suspension of gyrotactic microorganisms over an inclined stretching sheet. Journal of Heat Transfer, 143(3), p.031201. https://doi.org/10.1115/1.4048946
  24. Bernatchou, M., Gueraoui, K., Cherraj, M., Rtibi, A. and El Hamma, M., 2022, May. Analysis of the Magnetic Field Effect on Thermosolutal Convection Heat and Mass Transfer in a Square Cavity Filled with Nanofluid. In International Conference on Integrated Design and Production (pp. 605-615). Cham: Springer International Publishing.. https://doi.org/10.1007/978-3-031-23615-0_61
  25. Magagula, V.M., Shaw, S. and Kairi, R.R., 2020. Double dispersed bioconvective Casson nanofluid fluid flow over a nonlinear convective stretching sheet in suspension of gyrotactic microorganism. Heat Transfer, 49(5), pp. 2449-2471. https://doi.org/10.1002/htj.21730
  26. Bilal, S., Shah, I.A., Marzougui, S. and Ali, F., 2023. Entropy analysis in single phase nanofluid in square enclosure under effectiveness of inclined magnetic field by executing finite element simulations. Geoenergy Science and Engineering, 225, p.211483.  https://doi.org/10.1016/j.geoen.2023.211483
  27. Shah, I.A., Bilal, S., Asjad, M.I. and Tag-ElDin, E.M., 2022. Convective heat and mass transport in Casson fluid flow in curved corrugated cavity with inclined magnetic field. Micromachines, 13(10), p.1624. https://doi.org/10.3390/ mi13101624
  28. Bilal, S., Shah, I.A., Ghachem, K., Aydi, A. and Kolsi, L., 2023. Heat Transfer Enhancement of MHD Natural Convection in a Star-Shaped Enclosure, Using Heated Baffle and MWCNT–Water Nanofluid. Mathematics, 11(8), p.1849. https://doi.org/10.3390/ math11081849.
  29. Zare Ghadi, A., Haghighi Asl, A., Valipour, M. S., 2014. Numerical modelling of double-diffusive natural convection within an arc shaped enclosure filled with a porous medium, Journal of Heat and Mass Transfer Research, 1(2), pp. 83-91. Doi: 22075/JHMTR.2014.183
  30. Lare, A.I., 2015. Casson fluid flow with variable viscosity and thermal conductivity along exponentially stretching sheet embedded in a thermally stratified medium with exponentially heat generation. Journal of Heat and Mass Transfer Research, 2(2), pp.63-78. Doi: 22075/JHMTR.2015.346
  31. Ghaffarpasand, O., 2018. Characterization of unsteady double-diffusive mixed convection flow with soret and dufour effects in a square enclosure with top moving lid. Journal of Heat and Mass Transfer Research, 5(1), pp.51-68. 22075/JHMTR.2017.880.1062
  32. Patankar, S.V., 1980. Numerical heat transfert and fluid flow. Hemisphere, New York.
  33. Bounouar, A., Gueraoui, K., Taibi, M., Lahlou, A., Driouich, M., Sammouda, M., Men-La-Yakhaf, S. and Belcadi, M., 2016. Numerical and mathematical modeling of unsteady heat transfer within a spherical cavity: Applications laser in medicine. Contemporary Engineering Sciences, 9, pp.1183-1199.
  34. Mrabti, A., 1999. Simulation Numérique d’Ecoulement de Convection Naturelle dans une Géométrie Cylindrique à Axe Verticale Soumise à l’Effet d’un Champ Magnétique ou d’un Gradient de Concentration (Doctoral dissertation, Thèse, Faculté des Science Rabat).
  35. Sammouda, M., 2012. Modélisation théorique et numérique du phénomène de la convection naturelle et thermosolutale dans les milieux poreux à porosité variable. Thèse de Doctorat, Université Mohamed V, Morocco.
  36. Frankel, S.P., 1950. Convergence rates of iterative treatments of partial differential equations. Mathematics of Computation, 4(30), pp.65-75.