[1] Cekmecelioglu, D., 2021. Convective heat transfer in food process engineering. Engineering principles of unit operations in food processing. Elsevier, pp. 315–344.
[2] Cordioli, M., Rinaldi, M. and Barbanti, D., 2016. Investigation and modelling of natural convection and conduction heat exchange: study on food systems with modified starch by means of computational fluid dynamics. International Journal of Food Science \& Technology. Wiley Online Library, 51(4), pp. 854–864.
[3] Omosebi, A. O. and Igbokoyi, A. O., 2016. Boundary effect on pressure behavior of Power-Law non-Newtonian fluids in homogeneous reservoirs. Journal of Petroleum Science and Engineering. Elsevier, 146, pp. 838–855. doi: 10.1016/j.petrol.2016.07.036.
[4] Nie, R. S. et al., 2018 Modeling the characteristics of Bingham porous-flow mechanics for a horizontal well in a heavy oil reservoir. Journal of Petroleum Science and Engineering. Elsevier B.V., 171, pp. 71–81. doi: 10.1016/j.petrol.2018.07.026.
[5] Kumar, A. and Saha, S. K., 2016. Energy and exergy analyses of medium temperature latent heat thermal storage with high porosity metal matrix. Applied Thermal Engineering. Elsevier Ltd, 109, pp. 911–923. doi: 10.1016/j.applthermaleng.2016.04.161.
[6] Ouahouah, A. et al., 2021. Journal of Non-Newtonian Fluid Mechanics Natural convection within a non-uniformly heated cavity partly filled with a shear-thinning nanofluid and partly with air. Journal of Non-Newtonian Fluid Mechanics. Elsevier B.V., 289 (January), p. 104490. doi: 10.1016/j.jnnfm.2021.104490.
[7] Lamraoui, H., Mansouri, K. and Saci, R., 2019. Journal of Non-Newtonian Fluid Mechanics Numerical investigation on fluid dynamic and thermal behavior of a non-Newtonian Al2O3– water nanofluid flow in a confined impinging slot jet. Journal of Non-Newtonian Fluid Mechanics. Elsevier B.V., 265 (July 2018), pp. 11–27. doi: 10.1016/j.jnnfm.2018.12.011.
[8] Kang, J. et al., 2014. Journal of Non-Newtonian Fluid Mechanics Thermal instability of a nonhomogeneous power-law nanofluid in a porous layer with horizontal throughflow. Journal of Non-Newtonian Fluid Mechanics. Elsevier B.V., 213, pp. 50–56. doi: 10.1016/j.jnnfm.2014.09.006.
[9] Sheremet, M. A. and Pop, I., 2018. Effect of local heater size and position on natural convection in a tilted nanofluid porous cavity using LTNE and Buongiorno’s models. Journal of Molecular Liquids. Elsevier B.V., 266, pp. 19–28. doi: 10.1016/j.molliq.2018.06.065.
[10] Jamaludin, A. et al., 2020. MHD mixed convection stagnation-point flow of Cu-Al2O3/water hybrid nanofluid over a permeable stretching/shrinking surface with heat source/sink. European Journal of Mechanics, B/Fluids. Elsevier Masson SAS., 84, pp. 71–80. doi: 10.1016/j.euromechflu.2020.05.017.
[11] Alsabery, A. I. et al., 2017. Effects of finite wall thickness and sinusoidal heating on convection in nanofluid-saturated local thermal non-equilibrium porous cavity. Physica A: Statistical Mechanics and its Applications. Elsevier B.V., 470, pp. 20–38. doi: 10.1016/j.physa.2016.11.107.
[12] Khan, Z. H. et al., 2020. Hydromagnetic flow of ferrofluid in an enclosed partially heated trapezoidal cavity filled with a porous medium’, Journal of Magnetism and Magnetic Materials. Elsevier B.V., 499, p. 166241. doi: 10.1016/j.jmmm.2019.166241.
[13] Pekmen Geridonmez, B. and Oztop, H. F., 2019. Natural convection in a cavity filled with porous medium under the effect of a partial magnetic field. International Journal of Mechanical Sciences. Elsevier Ltd, 161–162, p. 105077. doi: 10.1016/j.ijmecsci.2019.105077.
[14] Toosi, M. H. and Siavashi, M., 2017. Two-phase mixture numerical simulation of natural convection of nanofluid flow in a cavity partially filled with porous media to enhance heat transfer. Journal of Molecular Liquids. Elsevier B.V, 238, pp. 553–569. doi: 10.1016/j.molliq.2017.05.015.
[15] Rodríguez-Núñez, K., Tabilo, E. and Moraga, N. O., 2019. Conjugate unsteady natural heat convection of air and non-Newtonian fluid in thick walled cylindrical enclosure partially filled with a porous media. International Communications in Heat and Mass Transfer. Elsevier, 108, p. 104304. doi: 10.1016/j.icheatmasstransfer.2019.104304.
[16] Sheikholeslami, M. and Vajravelu, K., 2017. Nanofluid flow and heat transfer in a cavity with variable magnetic field. Applied Mathematics and Computation, Elsevier Inc., 298, pp. 272–282. doi: 10.1016/j.amc.2016.11.025.
[17] Zhang, Y. et al., 2020. Flow and heat transfer simulation in a wall-driven porous cavity with internal heat source by multiple-relaxation time lattice Boltzmann method (MRT-LBM). Applied Thermal Engineering. Elsevier, 173(March), p. 115209. doi: 10.1016/j.applthermaleng.2020.115209.
[18] Sheremet, M. A. and Pop, I., 2015. Natural convection in a horizontal cylindrical annulus filled with a porous medium saturated by a nanofluid using Tiwari and Das’ nanofluid model. European Physical Journal Plus, 130(6), pp. 1-12. doi: 10.1140/epjp/i2015-15107-4.
[19] Li, Z. et al., 2019. Nanofluid heat transfer in a porous duct in the presence of Lorentz forces using the lattice Boltzmann method. European Physical Journal Plus, 134(1). doi: 10.1140/epjp/i2019-12406-8.
[20] Rajarathinam, M., Nithyadevi, N. and Chamkha, A. J., 2018. Heat transfer enhancement of mixed convection in an inclined porous cavity using Cu-water nanofluid. Advanced Powder Technology. The Society of Powder Technology Japan, 29(3), pp. 590–605. doi: 10.1016/j.apt.2017.11.032.
[21] Vijaybabu, T. R. and Dhinakaran, S., 2019. MHD Natural convection around a permeable triangular cylinder inside a square enclosure filled with Al2O3 −H2O nanofluid: An LBM study. International Journal of Mechanical Sciences. Elsevier Ltd, 153–154, pp. 500–516. doi: 10.1016/j.ijmecsci.2019.02.003.
[22] Gibanov, N. S. et al., 2017. Effect of uniform inclined magnetic field on mixed convection in a lid-driven cavity having a horizontal porous layer saturated with a ferrofluid. International Journal of Heat and Mass Transfer. Elsevier Ltd, 114, pp. 1086–1097. doi:10.1016/j.ijheatmasstransfer.2017.07.001.
[23] Ellahi, R. et al., 2023. Natural convection nanofluid flow with heat transfer analysis of carbon nanotubes–water nanofluid inside a vertical truncated wavy cone. Mathematical Methods in the Applied Sciences, 46(10), pp. 11303–11321. doi: 10.1002/mma.7281.
[24] Ellahi, R., 2013. The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: Analytical solutions. Applied Mathematical Modelling. Elsevier Inc., 37(3), pp. 1451–1467. doi: 10.1016/j.apm.2012.04.004.
[25] Aneja, M., Chandra, A. and Sharma, S., 2020. Natural convection in a partially heated porous cavity to Casson fluid. International Communications in Heat and Mass Transfer. Elsevier, 114, p. 104555. doi: 10.1016/j.icheatmasstransfer.2020.104555.
[26] Astanina, M. S. et al., 2018. MHD natural convection and entropy generation of ferrofluid in an open trapezoidal cavity partially filled with a porous medium. International Journal of Mechanical Sciences. Elsevier Ltd, 136(December 2017), pp. 493–502. doi: 10.1016/j.ijmecsci.2018.01.001.
[27] Selimefendigil, F. and Öztop, H. F., 2020b. Magnetohydrodynamics forced convection of nanofluid in multi-layered U-shaped vented cavity with a porous region considering wall corrugation effects. International Communications in Heat and Mass Transfer, Elsevier, 113, p. 104551. doi: 10.1016/j.icheatmasstransfer.2020.104551.
[28] Khan, A. A. et al., 2023. Heat transmission in Darcy-Forchheimer flow of Sutterby nanofluid containing gyrotactic microorganisms. International Journal of Numerical Methods for Heat \& Fluid Flow. Emerald Publishing Limited, 33(1), pp. 135–152.
[29] Zeeshan, A. et al., 2023. Hydromagnetic flow of two immiscible nanofluids under the combined effects of Ohmic and viscous dissipation between two parallel moving plates. Journal of Magnetism and Magnetic Materials. Elsevier, 575, p. 170741.
[30] Kole, M. and Dey, T. K., 2010. Thermal conductivity and viscosity of Al2O3 nanofluid based on car engine coolant. Journal of Physics D: Applied Physics, 43(31). doi: 10.1088/0022-3727/43/31/315501.
[31] Yu, W. and Xie, H., 2012. A review on nanofluids: Preparation, stability mechanisms, and applications. Journal of Nanomaterials, 2012. doi: 10.1155/2012/435873.
[32] Vafai, K., 2010. Porous media: applications in biological systems and biotechnology. CRC Press.
[33] Selimefendigil, F. and Öztop, H. F., 2020a. Effects of conductive curved partition and magnetic field on natural convection and entropy generation in an inclined cavity filled with nanofluid. Physica A: Statistical Mechanics and its Applications. Elsevier B.V., 540, p. 123004. doi: 10.1016/j.physa.2019.123004.
[34] Bin-Nun, U. and Manitakos, D., 2004. Low cost and high performance screen laminate regenerator matrix. Cryogenics, 44(6–8), pp. 439–444. doi:10.1016/j.cryogenics.2004.03.015.
[35] Kefayati, G. R., 2016 Simulation of heat transfer and entropy generation of MHD natural convection of non-Newtonian nanofluid in an enclosure, International Journal of Heat and Mass Transfer. Elsevier Ltd, 92, pp. 1066–1089. doi: 10.1016/j.ijheatmasstransfer.2015.09.078.
[36] Zhang, S., Zhao, X. and Bayyuk, S., 2014. Generalized formulations for the rhie-chow interpolation. Journal of Computational Physics. Elsevier Inc., 258, pp. 880–914. doi: 10.1016/j.jcp.2013.11.006.
[37] Kardgar, A. and Jafarian, A., 2016. Numerical investigation of oscillating conjugate heat transfer in pulse tubes. Applied Thermal Engineering. Elsevier Ltd, 105, pp. 557–565. doi:10.1016/j.applthermaleng.2016.03.045.
[38] Ferziger, J. H., Peric, M. and Leonard, A., 2020. Computational Methods for Fluid Dynamics, springer. doi: 10.1063/1.881751.
[39] Kardgar, A. and Jafarian, A., 2020. Numerical simulation of turbulent oscillating flow in porous media. Scientia Iranica. doi:10.24200/SCI.2020.52521.2788.
[40] Khanafer, K., Vafai, K. and Lightstone, M., 2003. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. International Journal of Heat and Mass Transfer, 46(19), pp. 3639–3653. doi: 10.1016/S0017-9310(03)00156-X.
[41] Krane, R. and Jessee, J., 1983. Some Detailed Field Measurement for a Natural Convection Flow in a Vertical Square Enclosure. in Proceedings of the First ASME-JSME Thermal Engineering Joint Conference, pp. 323–329.