Numerical Studies on the Effect of Different Obstruction Geometries on Performance of Rectangular Channel Air Heaters

Document Type : Full Lenght Research Article

Authors

1 Department of Mechanical Engineering, K J Somaiya College of Engineering, Mumbai-400077, India

2 Department of Mechanical Engineering, K J Somaiya College of Engineering, Somaiya Vidyavihar University, Mumbai-400077, India

Abstract

Air heaters have poor thermal efficiency. Flow obstructions improve the efficiency of the air heater by enhancing heat transfer and disrupting the formation of the laminar sub-layer. In the present study, a rectangular channel of aspect ratio 6 and obstructions of various geometry (triangular, rectangular, and arc (or semi-circular)) are used with a longitudinal pitch (Pl/e) of 4, transverse pitch (Pt/b) of 2 ratios for Reynolds Number (Re) from 5000 to 20000. Various performance parameters such as Nusselt Number (Nu), Friction factor (f), and Thermal Enhancement Factor (TEF) were analyzed for the above conditions using Computational Fluid Dynamics (CFD) to compare the thermohydraulic performance of air heaters with various obstruction geometries. Maximum TEF of 1.27, 1.08, and 1.05 are obtained at Re = 5000 for delta, rectangular, and arc flow obstructions, respectively. Delta flow obstructions are superior to arc and rectangular shapes for the investigated range of Reynolds numbers.

Keywords

Main Subjects


[1]   Yadav, A.S. and Thapak, M.K., 2016. Artificially roughened solar air heater: A comparative study. International Journal of Green Energy, 13(2), pp. 143-172. doi: 10.1080/15435075.2014.917419.
[2]   Kumar, M., Sansaniwal, S.K. and Khatak, P., 2016. Progress in solar dryers for drying various commodities. Renewable and Sustainable Energy Reviews, 55, pp.346-360. doi: 10.1016/j.rser.2015.10.158.
[3]   Shayan, M.E., Najafi, G., Ghobadian, B., Gorjian, S. and Mazlan, M., 2023. A novel approach of synchronization of the sustainable grid with an intelligent local hybrid renewable energy control. International Journal of Energy and Environmental Engineering, 14(1), pp.35-46. doi: 10.1007/s40095-022-00503-7.
[4]   Esmaeili Shayan, M., Najafi, G. and Esmaeili Shayan, S., 2023. Energy Management Model for a Standalone Hybrid Microgrid Using a Dynamic Decision-Making Algorithm. Amirkabir Journal of Mechanical Engineering, 55(1), pp.3-20. doi: 10.22060/mej.2023.20755.7346.
[5]   Esmaeili Shayan, M., Najafi, G., Ghobadian, B., Gorjian, S., Mazlan, M., Samami, M. and Shabanzadeh, A., 2022. Flexible photovoltaic system on non-conventional surfaces: a techno-economic analysis. Sustainability, 14(6), p.3566. doi: 10.3390/su14063566.
[6]   Shayan, M.E., Najafi, G., Ghobadian, B., Gorjian, S., Mamat, R. and Ghazali, M.F., 2022. Multi-microgrid optimization and energy management under boost voltage converter with Markov prediction chain and dynamic decision algorithm. Renewable Energy, 201, pp.179-189. doi: 10.1016/j.renene.2022.11.006.
[7]   Shayan, M.E., Najafi, G. and Lorenzini, G., 2023. Optimization of a dual fuel engine based on multi-criteria decision-making methods. Thermal Science and Engineering Progress, 44, p.102055. doi: 10.1016/j.tsep.2023.102055.
[8]   Shayan, M.E., Ghasemzadeh, F. and Rouhani, S.H., 2023. Energy storage concentrates on solar air heaters with artificial S-shaped irregularity on the absorber plate. Journal of Energy Storage, 74, p. 109289. doi: 10.1016/j.est.2023.109289.
[9]   Cyriac, B. and Bhusnoor, S.S., 2023, March. Performance Optimization of an Air Heater with Delta Flow Obstructions: A Taguchi Approach. In Proceedings of International Conference on Intelligent Manufacturing and Automation: ICIMA 2022 (pp. 621-630). Singapore: Springer Nature Singapore.
[10] Rautela, M., Sharma, S.L., Bisht, V.S., Debbarma, A. and Bahuguna, R., 2023. Numerical Analysis of Solar Air Heater Roughened with B-Shape and D-Shape Roughness Geometry. Journal of Heat and Mass Transfer Research, 10(1), pp. 101-120. doi: 10.22075/jhmtr.2023.30710.1445.
[11] Maithani, R., Chamoli, S., Kumar, A. and Gupta, A., 2019. Solar air heater duct roughened with wavy delta winglets: correlations development and parametric optimization. Heat and Mass Transfer, 55(12), pp.3473-3491. doi: 10.1007/s00231-019-02651-9.
[12] Maithani, R., Silori, A., Rana, J. and Chamoli, S., 2017. Numerical analysis of heat transfer and fluid flow of a wavy delta winglets in a rectangular duct. Thermal Science and Engineering Progress, 2, pp.15-25. doi: 10.1016/j.tsep.2017.04.002.
[13] Sarreshtedari, A. and Zamani Aghaee, A., 2014. Investigation of the thermo-hydraulic behavior of the fluid flow over a square ribbed channel. Journal of Heat and Mass Transfer Research, 1(2), pp. 107-115. doi: 10.22075/jhmtr.2014.186.
[14] Thapa, R.K., Bisht, V.S., Rawat, K.S. and Bhandari, P., 2022. Computational analysis of automobile radiator roughened with Rib roughness. Journal of Heat and Mass Transfer Research, 9(2), pp.209-218. doi: 10.22075/jhmtr.2023.27617.1382.
[15] Dutta, P. and Dutta, S., 1998. Effect of baffle size, perforation, and orientation on internal heat transfer enhancement. International Journal of Heat and Mass Transfer, 41(19), pp.3005-3013. doi: 10.1016/S0017-9310(98)00016-7.
[16] Karwa, R., Maheshwari, B.K. and Karwa, N., 2005. Experimental study of heat transfer enhancement in an asymmetrically heated rectangular duct with perforated baffles. International Communications in Heat and Mass Transfer, 32(1-2), pp. 275-284. doi: 10.1016/j.icheatmasstransfer.2004.10.002.
[17] Cyriac, B. and Bhusnoor, S.S., 2023. Thermal and hydraulic characteristics of an air heater with modified delta flow obstructions. e-Prime-Advances in Electrical Engineering, Electronics and Energy, 4, p.100147. doi: 10.1016/j.prime.2023.100147.
[18] Cyriac, B. and Bhusnoor, S.S., 2023. Numerical investigation of heat transfer performance of an air heater with delta flow obstruction. Materials Today: Proceedings, 72, pp.1246-1252. doi: 10.1016/j.matpr.2022.09.295.
[19] Reddy, P.N., Verma, V., Kumar, A. and Awasthi, M.K., 2023. CFD Simulation and Thermal Performance Optimization of Flow in a Channel with Multiple Baffles. Journal of Heat and Mass Transfer Research, 10(2), pp. 257–268, 2023, doi: 10.22075/JHMTR.2023.31108.1458.
[20] Webb, R.L., Eckert, E.R.G. and Goldstein, R., 1971. Heat transfer and friction in tubes with repeated-rib roughness. International journal of heat and mass transfer, 14(4), pp. 601-617. doi: 10.1016/0017-9310(71)90009-3.
[21] Han, J.C., Park, J.S. and Lei, C.K., 1985. Heat transfer enhancement in channels with turbulence promoters. J. Eng. Gas Turbines Power 107(3), pp. 628–635. doi: 10.1115/1.3239782.
[22] Baissi, M.T., Brima, A., Aoues, K., Khanniche, R. and Moummi, N., 2020. Thermal behavior in a solar air heater channel roughened with delta-shaped vortex generators. Applied Thermal Engineering, 165, p. 113563. doi: 10.1016/j.applthermaleng.2019.03.134.
[23] Patankar, S.V., Liu, C.H. and Sparrow, E.M., 1977. Fully developed flow and heat transfer in ducts having streamwise-periodic variations of cross-sectional area. J Heat Transfer, 99(2), pp. 180–186. doi: 10.1115/1.3450666.
[24] Tamna, S., Skullong, S., Thianpong, C. and Promvonge, P., 2014. Heat transfer behaviors in a solar air heater channel with multiple V-baffle vortex generators. Solar Energy, 110, pp. 720-735. doi: 10.1016/j.solener.2014.10.020.
[25] Skullong, S., Promthaisong, P., Promvonge, P., Thianpong, C. and Pimsarn, M., 2018. Thermal performance in solar air heater with perforated-winglet-type vortex generator. Solar Energy, 170, pp.1101-1117. doi: 10.1016/J.SOLENER.2018.05.093.
[26] Yadav, A.S. and Thapak, M.K., 2014. Artificially roughened solar air heater: Experimental investigations. Renewable and Sustainable Energy Reviews, 36, pp. 370-411. doi: 10.1016/j.rser.2014.04.077.
[27] Aharwal, K.R., Gandhi, B.K. and Saini, J.S., 2008. Experimental investigation on heat-transfer enhancement due to a gap in an inclined continuous rib arrangement in a rectangular duct of solar air heater. Renewable energy, 33(4), pp. 585-596. doi: 10.1016/j.renene.2007.03.023.
[28] Bekele, A., Mishra, M. and Dutta, S., 2014. Performance characteristics of solar air heater with surface mounted obstacles. Energy conversion and management, 85, pp.603-611. doi: 10.1016/j.enconman.2014.04.079.
[29] Bekele, A., Mishra, M. and Dutta, S., 2011. Effects of delta-shaped obstacles on the thermal performance of solar air heater. Advances in Mechanical Engineering, 3, p.103502. doi: 10.1155/2011/103502.
[30] Kumar, A. and Layek, A., 2022. Evaluation of the performance analysis of an improved solar air heater with Winglet shaped ribs. Experimental Heat Transfer, 35(3), pp. 239-257. doi: 10.1080/08916152.2020.1838670.
[31] Jain, S.K., Agrawal, G.D., Misra, R., Verma, P., Rathore, S. and Jamuwa, D.K., 2019. Performance Investigation of a Triangular Solar Air Heater Duct Having Broken Inclined Roughness Using Computational Fluid Dynamics. Journal of Solar Energy Engineering, 141(6), p.061008. doi: 10.1115/1.4043751.
[32] Karmare, S.V. and Tikekar, A.N., 2007. Heat transfer and friction factor correlation for artificially roughened duct with metal grit ribs. International Journal of Heat and Mass Transfer, 50(21-22), pp.4342-4351. doi: 10.1016/j.ijheatmasstransfer.2007.01.065.
[33]        Momin, A.M.E., Saini, J.S. and Solanki, S.C., 2002. Heat transfer and friction in solar air heater duct with V-shaped rib roughness on absorber plate. International Journal of Heat and Mass Transfer, 45(16), pp.3383-3396. doi: 10.1016/S0017-9310(02)00046-7.