[1] Yadav, A.S. and Thapak, M.K., 2016. Artificially roughened solar air heater: A comparative study. International Journal of Green Energy, 13(2), pp. 143-172. doi: 10.1080/15435075.2014.917419.
[2] Kumar, M., Sansaniwal, S.K. and Khatak, P., 2016. Progress in solar dryers for drying various commodities. Renewable and Sustainable Energy Reviews, 55, pp.346-360. doi: 10.1016/j.rser.2015.10.158.
[3] Shayan, M.E., Najafi, G., Ghobadian, B., Gorjian, S. and Mazlan, M., 2023. A novel approach of synchronization of the sustainable grid with an intelligent local hybrid renewable energy control. International Journal of Energy and Environmental Engineering, 14(1), pp.35-46. doi: 10.1007/s40095-022-00503-7.
[4] Esmaeili Shayan, M., Najafi, G. and Esmaeili Shayan, S., 2023. Energy Management Model for a Standalone Hybrid Microgrid Using a Dynamic Decision-Making Algorithm. Amirkabir Journal of Mechanical Engineering, 55(1), pp.3-20. doi: 10.22060/mej.2023.20755.7346.
[5] Esmaeili Shayan, M., Najafi, G., Ghobadian, B., Gorjian, S., Mazlan, M., Samami, M. and Shabanzadeh, A., 2022. Flexible photovoltaic system on non-conventional surfaces: a techno-economic analysis. Sustainability, 14(6), p.3566. doi: 10.3390/su14063566.
[6] Shayan, M.E., Najafi, G., Ghobadian, B., Gorjian, S., Mamat, R. and Ghazali, M.F., 2022. Multi-microgrid optimization and energy management under boost voltage converter with Markov prediction chain and dynamic decision algorithm. Renewable Energy, 201, pp.179-189. doi: 10.1016/j.renene.2022.11.006.
[7] Shayan, M.E., Najafi, G. and Lorenzini, G., 2023. Optimization of a dual fuel engine based on multi-criteria decision-making methods. Thermal Science and Engineering Progress, 44, p.102055. doi: 10.1016/j.tsep.2023.102055.
[8] Shayan, M.E., Ghasemzadeh, F. and Rouhani, S.H., 2023. Energy storage concentrates on solar air heaters with artificial S-shaped irregularity on the absorber plate. Journal of Energy Storage, 74, p. 109289. doi: 10.1016/j.est.2023.109289.
[9] Cyriac, B. and Bhusnoor, S.S., 2023, March. Performance Optimization of an Air Heater with Delta Flow Obstructions: A Taguchi Approach. In Proceedings of International Conference on Intelligent Manufacturing and Automation: ICIMA 2022 (pp. 621-630). Singapore: Springer Nature Singapore.
[10] Rautela, M., Sharma, S.L., Bisht, V.S., Debbarma, A. and Bahuguna, R., 2023. Numerical Analysis of Solar Air Heater Roughened with B-Shape and D-Shape Roughness Geometry. Journal of Heat and Mass Transfer Research, 10(1), pp. 101-120. doi: 10.22075/jhmtr.2023.30710.1445.
[11] Maithani, R., Chamoli, S., Kumar, A. and Gupta, A., 2019. Solar air heater duct roughened with wavy delta winglets: correlations development and parametric optimization. Heat and Mass Transfer, 55(12), pp.3473-3491. doi: 10.1007/s00231-019-02651-9.
[12] Maithani, R., Silori, A., Rana, J. and Chamoli, S., 2017. Numerical analysis of heat transfer and fluid flow of a wavy delta winglets in a rectangular duct. Thermal Science and Engineering Progress, 2, pp.15-25. doi: 10.1016/j.tsep.2017.04.002.
[13] Sarreshtedari, A. and Zamani Aghaee, A., 2014. Investigation of the thermo-hydraulic behavior of the fluid flow over a square ribbed channel. Journal of Heat and Mass Transfer Research, 1(2), pp. 107-115. doi: 10.22075/jhmtr.2014.186.
[14] Thapa, R.K., Bisht, V.S., Rawat, K.S. and Bhandari, P., 2022. Computational analysis of automobile radiator roughened with Rib roughness. Journal of Heat and Mass Transfer Research, 9(2), pp.209-218. doi: 10.22075/jhmtr.2023.27617.1382.
[15] Dutta, P. and Dutta, S., 1998. Effect of baffle size, perforation, and orientation on internal heat transfer enhancement. International Journal of Heat and Mass Transfer, 41(19), pp.3005-3013. doi: 10.1016/S0017-9310(98)00016-7.
[16] Karwa, R., Maheshwari, B.K. and Karwa, N., 2005. Experimental study of heat transfer enhancement in an asymmetrically heated rectangular duct with perforated baffles. International Communications in Heat and Mass Transfer, 32(1-2), pp. 275-284. doi: 10.1016/j.icheatmasstransfer.2004.10.002.
[17] Cyriac, B. and Bhusnoor, S.S., 2023. Thermal and hydraulic characteristics of an air heater with modified delta flow obstructions. e-Prime-Advances in Electrical Engineering, Electronics and Energy, 4, p.100147. doi: 10.1016/j.prime.2023.100147.
[18] Cyriac, B. and Bhusnoor, S.S., 2023. Numerical investigation of heat transfer performance of an air heater with delta flow obstruction. Materials Today: Proceedings, 72, pp.1246-1252. doi: 10.1016/j.matpr.2022.09.295.
[19] Reddy, P.N., Verma, V., Kumar, A. and Awasthi, M.K., 2023. CFD Simulation and Thermal Performance Optimization of Flow in a Channel with Multiple Baffles. Journal of Heat and Mass Transfer Research, 10(2), pp. 257–268, 2023, doi: 10.22075/JHMTR.2023.31108.1458.
[20] Webb, R.L., Eckert, E.R.G. and Goldstein, R., 1971. Heat transfer and friction in tubes with repeated-rib roughness. International journal of heat and mass transfer, 14(4), pp. 601-617. doi: 10.1016/0017-9310(71)90009-3.
[21] Han, J.C., Park, J.S. and Lei, C.K., 1985. Heat transfer enhancement in channels with turbulence promoters. J. Eng. Gas Turbines Power 107(3), pp. 628–635. doi: 10.1115/1.3239782.
[22] Baissi, M.T., Brima, A., Aoues, K., Khanniche, R. and Moummi, N., 2020. Thermal behavior in a solar air heater channel roughened with delta-shaped vortex generators. Applied Thermal Engineering, 165, p. 113563. doi: 10.1016/j.applthermaleng.2019.03.134.
[23] Patankar, S.V., Liu, C.H. and Sparrow, E.M., 1977. Fully developed flow and heat transfer in ducts having streamwise-periodic variations of cross-sectional area. J Heat Transfer, 99(2), pp. 180–186. doi: 10.1115/1.3450666.
[24] Tamna, S., Skullong, S., Thianpong, C. and Promvonge, P., 2014. Heat transfer behaviors in a solar air heater channel with multiple V-baffle vortex generators. Solar Energy, 110, pp. 720-735. doi: 10.1016/j.solener.2014.10.020.
[25] Skullong, S., Promthaisong, P., Promvonge, P., Thianpong, C. and Pimsarn, M., 2018. Thermal performance in solar air heater with perforated-winglet-type vortex generator. Solar Energy, 170, pp.1101-1117. doi: 10.1016/J.SOLENER.2018.05.093.
[26] Yadav, A.S. and Thapak, M.K., 2014. Artificially roughened solar air heater: Experimental investigations. Renewable and Sustainable Energy Reviews, 36, pp. 370-411. doi: 10.1016/j.rser.2014.04.077.
[27] Aharwal, K.R., Gandhi, B.K. and Saini, J.S., 2008. Experimental investigation on heat-transfer enhancement due to a gap in an inclined continuous rib arrangement in a rectangular duct of solar air heater. Renewable energy, 33(4), pp. 585-596. doi: 10.1016/j.renene.2007.03.023.
[28] Bekele, A., Mishra, M. and Dutta, S., 2014. Performance characteristics of solar air heater with surface mounted obstacles. Energy conversion and management, 85, pp.603-611. doi: 10.1016/j.enconman.2014.04.079.
[29] Bekele, A., Mishra, M. and Dutta, S., 2011. Effects of delta-shaped obstacles on the thermal performance of solar air heater. Advances in Mechanical Engineering, 3, p.103502. doi: 10.1155/2011/103502.
[30] Kumar, A. and Layek, A., 2022. Evaluation of the performance analysis of an improved solar air heater with Winglet shaped ribs. Experimental Heat Transfer, 35(3), pp. 239-257. doi: 10.1080/08916152.2020.1838670.
[31] Jain, S.K., Agrawal, G.D., Misra, R., Verma, P., Rathore, S. and Jamuwa, D.K., 2019. Performance Investigation of a Triangular Solar Air Heater Duct Having Broken Inclined Roughness Using Computational Fluid Dynamics. Journal of Solar Energy Engineering, 141(6), p.061008. doi: 10.1115/1.4043751.
[32] Karmare, S.V. and Tikekar, A.N., 2007. Heat transfer and friction factor correlation for artificially roughened duct with metal grit ribs. International Journal of Heat and Mass Transfer, 50(21-22), pp.4342-4351. doi: 10.1016/j.ijheatmasstransfer.2007.01.065.
[33] Momin, A.M.E., Saini, J.S. and Solanki, S.C., 2002. Heat transfer and friction in solar air heater duct with V-shaped rib roughness on absorber plate. International Journal of Heat and Mass Transfer, 45(16), pp.3383-3396. doi: 10.1016/S0017-9310(02)00046-7.