Influences of Gyrotactic Microorganisms and Nonlinear Mixed Bio-Convection on Hybrid Nanofluid Flow over an Inclined Extending Plate with Porous Effects

Document Type : Full Length Research Article

Authors

1 College of Aeronautical Engineering, National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan

2 Center for Numerical Simulation Software in Engineering and Sciences, College of Mechanics and Materials, Hohai University, Nanjing, 211100, PR China

3 Department of Mathematics and Statistics, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia

Abstract

This study investigates nonlinear mixed convective hybrid nanofluid flow over a spongy, inclined stretching surface. There are numerous applications of nonlinear convection, and it is especially pivotal in predicting weather patterns accurately and optimizing heat transfer for efficient electronic and industrial cooling systems. The flow is also influenced by the porous behavior of the plate and the presence of the microorganisms. The main emphasis is given to analyzing the influence of thermal and mass Grashof numbers for their nonlinear nature upon the flow system. The equations that administered the flow system are converted to dimensionless notations by using suitable variables. The homotopy analysis approach has been used for the solution of modeled equations. It has been perceived in this work that fluid velocity declines with the upsurge in inertial factor, permeability parameter, volume fraction, and magnetic factor. Thermal profiles upsurge with growth in Brownian, thermophoresis factors, Eckert number, and weaken with Prandtl number. Concentration of fluid increases with progression in the thermophoresis factor and drops with greater values of Schmidt number and Brownian factor. Density number has declined with growth in Peclet, bioconvective Lewis numbers, and inclination angle. Over the range  the heat transfer rate jumps from 1.8057 to 2.1332 in case of , from 1.8057 to 2.1968 in case of  and it jumps from 1.8057 2.3177 in case of  that shows maximum heat transfer rate in case of variations in Eckert number.

Keywords

Main Subjects


  1. Muhammad, R., Khan, M. I., Jameel, M., & Khan, N. B., 2020. Fully developed Darcy-Forchheimer mixed convective flow over a curved surface with activation energy and entropy generation. Computer Methods and Programs in Biomedicine, 188, 105298.
  2. Waini, I., Ishak, A., & Pop, I., 2020. Mixed convection flow over an exponentially stretching/shrinking vertical surface in a hybrid nanofluid. Alexandria Engineering Journal, 59(3), 1881-1891.
  3. Safdar, R., Jawad, M., Hussain, S., Imran, M., Akgül, A., & Jamshed, W., 2022. Thermal radiative mixed convection flow of MHD Maxwell nanofluid: Implementation of buongiorno's model. Chinese Journal of Physics, 77, 1465-1478.
  4. Nabwey, H. A., EL-Kabeir, S. M. M., Rashad, A. M., & Abdou, M. M. M., 2022. Gyrotactic microorganisms mixed convection flow of nanofluid over a vertically surfaced saturated porous media. Alexandria Engineering Journal, 61(3), 1804-1822.
  5. Wahid, N. S., Arifin, N. M., Khashi'ie, N. S., Pop, I., Bachok, N., & Hafidzuddin, M. E. H., 2022. MHD mixed convection flow of a hybrid nanofluid past a permeable vertical flat plate with thermal radiation effect. Alexandria Engineering Journal, 61(4), 3323-3333.
  6. Ali, B., Liu, S., Jubair, S., Khalifa, H. A. E. W., & Abd El-Rahman, M., 2023. Exploring the impact of Hall and ion slip effects on mixed convective flow of Casson fluid Model: A stochastic investigation through non-Fourier double diffusion theories using ANNs techniques. Thermal Science and Engineering Progress, 46, 102237.
  7. Choi, S. U., & Eastman, J. A., 1995. Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29). Argonne National Lab.(ANL), Argonne, IL (United States).
  8. Sharma, R. P., Badak, K., Mishra, S. R., & Ahmed, S., 2023. Behavior of hybrid nanostructure and dust particles in fluid motion with thermal radiation and memory effects. The European Physical Journal Plus, 138(2), 159.
  9. Chu, Y. M., Bashir, S., Ramzan, M., & Malik, M. Y., 2022. Model‐based comparative study of magnetohydrodynamics unsteady hybrid nanofluid flow between two infinite parallel plates with particle shape effects. Mathematical Methods in the Applied Sciences.
  10. Khan, A., Hassan, B., Ashraf, E. E., & Shah, S. Y. A., 2022. Thermally dissipative micropolar hybrid nanofluid flow over a spinning needle influenced by Hall current and gyrotactic microorganisms. Heat Transfer, 51(1), 1170-1192.
  11. Eid, M. R., & Nafe, M. A., 2022. Thermal conductivity variation and heat generation effects on magneto-hybrid nanofluid flow in a porous medium with slip condition. Waves in Random and Complex Media, 32(3), 1103-1127.
  12. Ojjela, O., 2022. Numerical investigation of heat transport in Alumina–Silica hybrid nanofluid flow with modeling and simulation. Mathematics and Computers in Simulation, 193, 100-122.
  13. Ali, B., Jubair, S., Aluraikan, A., Abd El-Rahman, M., Eldin, S. M., & Khalifa, H. A. E. W., 2023. Numerical investigation of heat source induced thermal slip effect on trihybrid nanofluid flow over a stretching surface. Results in Engineering, 20, 101536.
  14. Gumber, P., Yaseen, M., Rawat, S. K., & Kumar, M., 2022. Heat transfer in micropolar hybrid nanofluid flow past a vertical plate in the presence of thermal radiation and suction/injection effects. Partial Differential Equations in Applied Mathematics, 5, 100240.
  15. Ali, B., Jubair, S., Fathima, D., Akhter, A., Rafique, K., & Mahmood, Z., 2023. MHD flow of nanofluid over moving slender needle with nanoparticles aggregation and viscous dissipation effects. Science Progress, 106(2), 00368504231176151.
  16. Ali, B., AlBaidani, M. M., Jubair, S., Ganie, A. H., & Abdelmohsen, S. A., 2023. Computational framework of hydrodynamic stagnation point flow of nanomaterials with natural convection configured by a heated stretching sheet. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, e202200542.
  17. Ali, B., Mishra, N. K., Rafique, K., Jubair, S., Mahmood, Z., & Eldin, S. M., 2023. Mixed convective flow of hybrid nanofluid over a heated stretching disk with zero-mass flux using the modified Buongiorno model. Alexandria Engineering Journal, 72, 83-96.
  18. Elattar, S., Helmi, M. M., Elkotb, M. A., El-Shorbagy, M. A., Abdelrahman, A., Bilal, M., & Ali, A., 2022. Computational assessment of hybrid nanofluid flow with the influence of hall current and chemical reaction over a slender stretching surface. Alexandria Engineering Journal, 61(12), 10319-10331.
  19. Sabu, A. S., Mackolil, J., Mahanthesh, B., & Mathew, A., 2022. Nanoparticle aggregation kinematics on the quadratic convective magnetohydrodynamic flow of nanomaterial past an inclined flat plate with sensitivity analysis. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 236(3), 1056-1066.
  20. Kodi, R., & Mopuri, O., 2022. Unsteady MHD oscillatory Casson fluid flow past an inclined vertical porous plate in the presence of chemical reaction with heat absorption and Soret effects. Heat Transfer, 51(1), 733-752.
  21. Osman, H. I., Omar, N. F. M., Vieru, D., & Ismail, Z., 2022. A Study of MHD Free Convection Flow Past an Infinite Inclined Plate. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 92(1), pp. 18-27.
  22. Jha, B. K., & Samaila, G., 2022. The Combined Impact of Thermal Radiation and Thermophoresis on Buoyancy-Driven Flow Near an Inclined Porous Plate. Journal of Heat Transfer, 144(10).
  23. Sheri, S. R., Peesu, M., & Mamidi Narsimha, R., 2022. Hall current, chemical reaction, and radiation results on transient magnetohydrodynamic flow past an inclined plate: FEM. Heat Transfer, 51(2), pp. 1876-1899.
  24. Hazarika, S., Ahmed, S., & Yao, S. W., 2023. Investigation of Cu–water nano-fluid of natural convection hydro-magnetic heat transport in a Darcian porous regime with diffusion-thermo. Applied Nanoscience, 13(1), 283-293.
  25. Ali, L., Liu, X., Ali, B., Mujeed, S., Abdal, S., & Khan, S. A., 2020. Analysis of magnetic properties of nano-particles due to a magnetic dipole in micropolar fluid flow over a stretching sheet. Coatings, 10(2), 170.
  26. Sarada, K., Gowda, R. J. P., Sarris, I. E., Kumar, R. N., & Prasannakumara, B. C., 2021. Effect of magnetohydrodynamics on heat transfer behaviour of a non-Newtonian fluid flow over a stretching sheet under local thermal non-equilibrium condition. Fluids, 6(8), p. 264.
  27. Reza-E-Rabbi, S., Ahmmed, S. F., Arifuzzaman, S. M., Sarkar, T., & Khan, M. S., 2020. Computational modelling of multiphase fluid flow behaviour over a stretching sheet in the presence of nanoparticles. Engineering Science and Technology, an International Journal, 23(3), pp. 605-617.
  28. Warke, A. S., Ramesh, K., Mebarek-Oudina, F., & Abidi, A., 2022. Numerical investigation of the stagnation point flow of radiative magnetomicropolar liquid past a heated porous stretching sheet. Journal of Thermal Analysis and Calorimetry, 147(12), pp. 6901-6912.
  29. Guedri, K., Khan, A., Gul, T., Mukhtar, S., Alghamdi, W., Yassen, M. F., & Tag Eldin, E., 2022. Thermally Dissipative Flow and Entropy Analysis for Electromagnetic Trihybrid Nanofluid Flow Past a Stretching Surface. ACS omega.
  30. Shah, S. A. A., Ahammad, N. A., Din, E. M. T. E., Gamaoun, F., Awan, A. U., & Ali, B., 2022. Bio-convection effects on prandtl hybrid nanofluid flow with chemical reaction and motile microorganism over a stretching sheet. Nanomaterials, 12(13), 2174.
  31. Hazarika, S., Ahmed, S., & Chamkha, A. J., 2021. Investigation of nanoparticles Cu, Ag and Fe3O4 on thermophoresis and viscous dissipation of MHD nanofluid over a stretching sheet in a porous regime: a numerical modeling. Mathematics and Computers in Simulation, 182, 819-837.
  32. Waqas, H., Imran, M., Muhammad, T., Sait, S. M., & Ellahi, R., 2020. On bio-convection thermal radiation in Darcy–Forchheimer flow of nanofluid with gyrotactic motile microorganism under Wu’s slip over stretching cylinder/plate. International Journal of Numerical Methods for Heat & Fluid Flow.
  33. Yusuf, T. A., Mabood, F., Prasannakumara, B. C., & Sarris, I. E., 2021. Magneto-bioconvection flow of Williamson nanofluid over an inclined plate with gyrotactic microorganisms and entropy generation. Fluids, 6(3), 109.
  34. Khan, A., Saeed, A., Tassaddiq, A., Gul, T., Mukhtar, S., Kumam, P., & Kumam, W., 2021. Bio-convective micropolar nanofluid flow over thin moving needle subject to Arrhenius activation energy, viscous dissipation and binary chemical reaction. Case Studies in Thermal Engineering, 25, 100989.
  35. Bhatti, M. M., Arain, M. B., Zeeshan, A., Ellahi, R., & Doranehgard, M. H., 2022. Swimming of Gyrotactic Microorganism in MHD Williamson nanofluid flow between rotating circular plates embedded in porous medium: Application of thermal energy storage. Journal of Energy Storage, 45, 103511.
  36. Das, B., & Ahmed, S., 2023. Numerical modeling of bioconvection and heat transfer analysis of Prandtl nanofluid in an inclined stretching sheet: A finite difference scheme. Numerical Heat Transfer, Part A: Applications, 1-21.
  37. Shah, S. A., Mouldi, A., & Sene, N., 2022. Nonlinear Convective SiO2 and TiO2 Hybrid Nanofluid Flow over an Inclined Stretched Surface. Journal of Nanomaterials, 2022.
  38. Gul, T., Mukhtar, S., Alghamdi, W., Ali, I., Saeed, A., & Kumam, P., 2022. Entropy and Bejan Number Influence on the Liquid Film Flow of Viscoelastic Hybrid Nanofluids in a Porous Space in Terms of Heat Transfer. ACS omega.
  39. Yazdi, M. E., Moradi, A., & Dinarvand, S., 2014. MHD mixed convection stagnation-point flow over a stretching vertical plate in porous medium filled with a nanofluid in the presence of thermal radiation. Arabian journal for science and engineering, 39, 2251-2261.
  40. Liao, S. J., 1999. Explicit totally analytic approximate solution for Blasius viscous flow problems. International Journal of Non-Linear Mechanics, 34, 759-778.
  41. Liao, S. J., 2010. An optimal homotopy analysis approach for strongly nonlinear differential equations. Communications in Nonlinear Science and Numerical Simulation, 15(8), pp.2003-2016.