Activation energy is of considerable significance in diverse applications such as chemical kinetics, catalyst development, enzymes, semiconductors, and systems sensitive to temperature, such as chemical reactors and engines. The objective of this research is to investigate the influence of activation energy on a magnetized couple stress fluid over an inclined stretching permeable cylinder in a non-Darcy porous medium. The effects of cross-diffusion and stratified mixed convection are also considered in fluid model. The boundary layer equations, which describe the flow, have been converted into dimensionless form through suitable transformable variables. Subsequently, these transformed equations are solved using fourth order Runge-Kutta mechanism along with the shooting technique. The outcomes comprise visual depictions and comprehensive explanations demonstrating the influence of relevant variables on thermal, concentration, and velocity fields. Observations reveal that the concentration profile is directly influenced by the Forchheimer number and activation energy parameter, whereas both temperature and concentration fields decrease with elevated thermal and solutal stratification parameters. Additionally, numerical outcomes for the skin-friction coefficient, Nusselt number, and Sherwood number are presented in tabular form.
Stokes, V. K., 1966. Couple stresses in fluids. Fluids, 9(9), pp. 1709–1715. doi: 10.1063/1.1761925.
Rani, H.P., G. J. Reddy, G. J., and Kim C. N., 2011. Numerical analysis of couple stress fluid past an infinite vertical cylinder. Appl. Comput. Fluid Mech., 5(2), pp. 159–169. doi: 10.1080/19942060.2011.11015360.
Gajjela, N. and Garvandha, M., 2020. The influence of magnetized couple stress heat, and mass transfer flow in a stretching cylinder with convective boundary condition, cross-diffusion, and chemical reaction. Sci. Eng. Prog., 18, pp. 100517. doi: 10.1016/j.tsep.2020.100517.
Ibrahim, W. and Gadisa, G., 2020. Double Stratified Mixed Convective Flow of Couple Stress Nanofluid past Inclined Stretching Cylinder Using Cattaneo-Christov Heat and Mass Flux Model. Advances in Mathematical Physics, 2020(1), p. 4890152. doi: 10.1155/2020/4890152.
Palaiah, S. S., Basha, H., and Reddy G. J., 2021. Magnetized couple stress fluid flow past a vertical cylinder under thermal radiation and viscous dissipation effects. Nonlinear Eng., 10(1), pp. 343–362. doi: 10.1515/nleng-2021-0027.
Awais, M. and Salahuddin, T., 2023. Natural convection with variable fluid properties of couple stress fluid with Cattaneo-Christov model and enthalpy process. Heliyon, 9(8), pp. 18546. doi: 10.1016/j.heliyon.2023.e18546.
Arrhenius, S., 1889. Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte / About the heat of dissociation and the influence of temperature on the degree of dissociation of the electrolytes (in German). Zeitschrift für Phys. Chemie.
Bestman, A. R., 1990. Natural convection boundary layer with suction and mass transfer in a porous medium. J. Energy Res., 14(4), pp. 389–396. doi: 10.1002/er.4440140403.
Abbas, Z., Sheikh, M. and Motsa, S. S., 2016. Numerical solution of binary chemical reaction on stagnation point flow of Casson fluid over a stretching/shrinking sheet with thermal radiation. Energy, 95, pp. 12–20. doi: 10.1016/j.energy.2015.11.039.
Waqas, H., Wakif, A., Al-Mdallal, Q., Zaydan, M., Farooq, U. and Hussain, M., 2022. Significance of magnetic field and activation energy on the features of stratified mixed radiative-convective couple-stress nanofluid flows with motile microorganisms. Alexandria Eng. J., 61(2), pp. 1425–1436. doi: 10.1016/j.aej.2021.06.047.
Ibrahim, W., and Negera, M. 2020. The Investigation of MHD Williamson Nanofluid over Stretching Cylinder with the Effect of Activation Energy. Math. Phys. doi: 10.1155/2020/9523630.
Mustafa, M., Khan, J.A., Hayat, T., and Alsaedi, A., 2017. Buoyancy effects on the MHD nanofluid flow past a vertical surface with chemical reaction and activation energy. J. Heat Mass Transf., 108, pp. 1340–1346. doi: 10.1016/j.ijheatmasstransfer.2017.01.029.
Hamid, A., Khan, M. and Khan, U., 2018. Thermal radiation effects on Williamson fluid flow due to an expanding/contracting cylinder with nanomaterials: Dual solutions. Lett. Sect. A Gen. At. Solid State Phys., 382(30), pp. 1982–1991. doi: 10.1016/j.physleta.2018.04.057.
Awad, F. G., Motsa, S. and Khumalo, M., 2014. Heat and mass transfer in unsteady rotating fluid flow with binary chemical reaction and activation energy. PLoS One, 9(9). doi: 10.1371/journal.pone.0107622.
Reddy, K. J. and Reddy, M. S., 2013. Effects Of Chemical Reaction And Heat Generation On MHD Boundary Layer Flow Of A Moving Vertical Plate With Suction And Dissipation. i-manager’s J. Futur. Eng. Technol., 8(4), pp. 30–40. doi: 10.26634/jfet.8.4.2359.
Saeed, A., Kumam, P., Gul, T., Alghamdi, W., Kumam, W. and Khan, A., 2021. Darcy–Forchheimer couple stress hybrid nanofluids flow with variable fluid properties. Rep., 11(1), pp. 1–13. doi: 10.1038/s41598-021-98891-z.
Nagaraja, L., Reddy, M. S. N., 2017. Heat Transfer in a Non-Newtonian Fluid Past a Horizontal Circular Cylinder in Non-Darcy Porous Medium with Suction\Injection Effects. Indian J. Sci. Technol., 10(32), pp. 1–7. doi: 10.17485/ijst/2017/v10i32/104601.
Hayat, T., Saeed, Y., Asad, S. and Alsaedi, A., 2016. Convective heat and mass transfer in flow by an inclined stretching cylinder. Mol. Liq., 220, pp. 573–580. doi: 10.1016/j.molliq.2016.03.047.
Ganesh, N. V., Abdul Hakeem, A. K. and Ganga, B., 2018. Darcy–Forchheimer flow of hydromagnetic nanofluid over a stretching/shrinking sheet in a thermally stratified porous medium with second order slip, viscous and Ohmic dissipations effects. Ain Shams Eng. J., 9(4), pp. 939–951. doi: 10.1016/j.asej.2016.04.019.
Pal, D. and Mondal, H., 2010. Effect of variable viscosity on MHD non-Darcy mixed convective heat transfer over a stretching sheet embedded in a porous medium with non-uniform heat source/sink, Nonlinear Sci. Numer. Simul., 15(6), pp. 1553–1564. doi: 10.1016/j.cnsns.2009.07.002.
Hayat T., Asad, S. and Alsaedi, A., 2017. Non-uniform heat source/sink and thermal radiation effects on the stretched flow of cylinder in a thermally stratified medium. Appl. Fluid Mech., 10(3), pp. 915–924. doi: 10.18869/acadpub.jafm.73.240.24008.
Hayat, T., Asad, S., Alsaedi, A. and Alsaadi, F.E., 2015. Radiative flow of jeffrey fluid through a convectively heated stretching cylinder. Mech., 31(11), pp. 69–78. doi: 10.1017/jmech.2014.49.
Jain, S., and Choudhary, R., 2017. Soret and Dufour effects on MHD fluid flow due to moving permeable cylinder with radiation. Stoch. Anal, 4, pp. 75–84.
Khan, N. A., Khan, H. and Ali, S. A., 2016. Exact solutions for MHD flow of couple stress fluid with heat transfer. Egypt. Math. Soc., 24(1), pp. 125–129. doi: 10.1016/j.joems.2014.10.003.
Jain, S. and Parmar, A., 2018. Radiation Effect on MHD Williamson Fluid Flow over Stretching Cylinder Through Porous Medium with Heat Source. Notes Mech. Eng., 0, pp. 61–78. doi: 10.1007/978-981-10-5329-0_5.
Bilal, S., Rehman, K. U. and Malik, M. Y., 2017. Numerical investigation of thermally stratified Williamson fluid flow over a cylindrical surface via Keller box method. Results Phys., 7, pp. 690–696. doi: 10.1016/j.rinp.2017.01.032.
Rehman, K. U., Khan, A. A., Malik, M. Y. and Ali, U., 2017. Mutual effects of stratification and mixed convection on Williamson fluid flow under stagnation region towards an inclined cylindrical surface. MethodsX, 4, pp. 429–444. doi: 10.1016/j.mex.2017.10.007.
Ramzan, M., Bilal, M. and Chung, J. D., 2017. Effects of thermal and solutal stratification on jeffrey magneto-nanofluid along an inclined stretching cylinder with thermal radiation and heat generation/absorption. J. Mech. Sci., 131–132, pp. 317–324. doi: 10.1016/j.ijmecsci.2017.07.012.
Mohd Sohut, N. F. H., Abd Aziz, A. S. and Ali, Z. M., 2017. Double stratification effects on boundary layer over a stretching cylinder with chemical reaction and heat generation. Phys. Conf. Ser., 890(1). doi: 10.1088/1742-6596/890/1/012019.
Rehman, A. and Nadeem, S., 2013. Heat Transfer Analysis of the Boundary Layer Flow over a Vertical Exponentially Stretching Cylinder. J. Sci. Front. Res. Math. Decis. Sci., 13(11).
Rashid, U., Liang, H. Ahmad, H., Abbas, M., Iqbal, A., and Hamed, S., 2021. Results in Physics Study of (Ag and TiO2)/ water nanoparticles shape effect on heat transfer and hybrid nanofluid flow toward stretching shrinking horizontal cylinder. Results Phys., 21. doi: 10.1016/j.rinp.2020.103812.
Sharma, S., & Jain, S. (2025). Effect of Activation Energy on Magnetized Couple Stress Fluid over an Inclined Stretching Permeable Cylinder. Journal of Heat and Mass Transfer Research, 12(1), 1-14. doi: 10.22075/jhmtr.2024.31879.1480
MLA
Suman Sharma; Shalini Jain. "Effect of Activation Energy on Magnetized Couple Stress Fluid over an Inclined Stretching Permeable Cylinder", Journal of Heat and Mass Transfer Research, 12, 1, 2025, 1-14. doi: 10.22075/jhmtr.2024.31879.1480
HARVARD
Sharma, S., Jain, S. (2025). 'Effect of Activation Energy on Magnetized Couple Stress Fluid over an Inclined Stretching Permeable Cylinder', Journal of Heat and Mass Transfer Research, 12(1), pp. 1-14. doi: 10.22075/jhmtr.2024.31879.1480
VANCOUVER
Sharma, S., Jain, S. Effect of Activation Energy on Magnetized Couple Stress Fluid over an Inclined Stretching Permeable Cylinder. Journal of Heat and Mass Transfer Research, 2025; 12(1): 1-14. doi: 10.22075/jhmtr.2024.31879.1480