Chemical Reactions on MHD Couple Stress Fluids towards Stretchable Inclined Cylinder

Document Type : Full Length Research Article

Authors

Department of Mathematics, University of Rajasthan, Jaipur-302004, India

Abstract

This study focuses on exploring the influence of homogeneous and heterogeneous chemical reactions on a couple of stress fluids surrounding a permeable inclined stretching cylinder. The impact of a uniform magnetic field and porous media is also considered in the fluid model. It is assumed that the diffusion coefficients for chemical species A and B are of similar magnitudes and that the heat released during the chemical reaction is negligible. The governing partial differential equations (PDEs) are evolved and transformed into ordinary differential equations (ODEs) using adequate similarity alterations. These ODEs are subsequently solved using the shooting technique in conjunction with the fourth-order Runge-Kutta method, implemented through MATLAB software. Results are presented through graphs and tables depicting the velocity, temperature, and concentration fields. Furthermore, numerical findings for the skin friction coefficient and Nusselt number are discussed. The concentration field experiences a decline as homogeneous-heterogeneous reactions intensify, attributable to the heightened dispersion of concentrations across the system, resulting in a more intricate distribution pattern.

Keywords

Main Subjects


[1]   Stokes, V. K., 1966. Couple stresses in fluids. Phys. Fluids, 9(9), pp. 1709–1715. doi: 10.1063/1.1761925.
[2]   Rani, H. P., Reddy, G. J., Kim, C. N., 2011. Numerical analysis of couple stress fluid past an infinite vertical cylinder. Eng. Appl. Comput. Fluid Mech., 5(2), pp. 159–169. doi: 10.1080/19942060.2011.11015360.
[3]   Rani, H. P. and Reddy, G. J., 2013. Heatline visualization for conjugate heat transfer of a couple stress fluid from a vertical slender hollow cylinder. Int. Commun. Heat Mass Transf., 48, pp. 46–52. doi: 10.1016/j.icheatmasstransfer.2013.08.015.
[4]   Rani, H. P., Reddy, G. J., Kim, C. N., Rameshwar, Y., 2015. Transient Couple Stress Fluid Past a Vertical Cylinder with Bejan’s Heat and Mass Flow Visualization for Steady-State. J. Heat Transfer, 137(3). doi: 10.1115/1.4029085.
[5]   Ibrahim, W. and Gadisa, G., 2020. Double Stratified Mixed Convective Flow of Couple Stress Nanofluid past Inclined Stretching Cylinder Using Cattaneo-Christov Heat and Mass Flux Model. Adv. Math. Phys. doi: 10.1155/2020/4890152.
[6]   Gajjela, N. and Garvandha, M., 2020. The influence of magnetized couple stress heat, and mass transfer flow in a stretching cylinder with convective boundary condition, cross-diffusion, and chemical reaction. Therm. Sci. Eng. Prog., 18, p. 100517. doi: 10.1016/j.tsep.2020.100517.
[7]   Palaiah, S. S., Basha, H., Reddy, G. J., 2021. Magnetized couple stress fluid flow past a vertical cylinder under thermal radiation and viscous dissipation effects. Nonlinear Eng., 10(1), pp. 343–362. doi: 10.1515/nleng-2021-0027.
[8]   Asad, S., Alsaedi, A. and Hayat, T., 2016. Flow of couple stress fluid with variable thermal conductivity. Appl. Math. Mech., 37, pp. 315–324.
[9]   Saeed, A., Kumam, P., Gul, T., Alghamdi, W., Kumam, W., Khan, A., 2021. Darcy–Forchheimer couple stress hybrid nanofluids flow with variable fluid properties. Sci. Rep., 11(1), pp. 1–13. doi: 10.1038/s41598-021-98891-z.
[10] Bharty, M., Srivastava, A. K., Mahato, H., 2023. Stability of Magneto Double Diffusive Convection in Couple Stress Liquid with Chemical Reaction. J. Heat Mass Transf. Res., 10(2), pp. 171–190. doi: 10.22075/jhmtr.2023.30246.1432.
[11] Malik R. and Khan, M., 2018. Numerical study of homogeneous–heterogeneous reactions in Sisko fluid flow past a stretching cylinder. Results Phys., 8, pp. 64–70.
[12] Rashad, M. S., Manzoor, U., Khan, S. A., Liu, H., Muhammad, T., 2023. Numerical investigation of magnetized nanofluid flow with thermal radiation and homogeneous/heterogeneous reactions over a vertical cylinder. Case Stud. Therm. Eng., vol., 50, p. 103424.
[13] Giri, S. S., Das, K., Kundu, P. K., 2020. Homogeneous-heterogeneous reaction mechanism on MHD carbon nanotube flow over a stretching cylinder with prescribed heat flux using differential transform method. J. Comput. Des. Eng., 7(3), pp. 337–351. doi: 10.1093/jcde/qwaa028.
[14] Imtiaz, M., Mabood, F., Hayat, T., Alsaedi, A., 2019. Homogeneous-heterogeneous reactions in MHD radiative flow of second grade fluid due to a curved stretching surface. Int. J. Heat Mass Transf.,145, p. 11878.
[15] Jain, S. and Gupta, P., 2019. Second law analysis of MHD Casson and Maxwell fluid flow over a permeable stretching sheet with homogenous heterogeneous reactions and variable heat source. 57, pp. 385–399.
[16] Satya Narayana, P. V., Tarakaramu, N., Harish Babu, D., 2022. Influence of chemical reaction on MHD couple stress nanoliquid flow over a bidirectional stretched sheet. Int. J. Ambient Energy, 43(1), pp. 4928–4938.
[17] Naveed, M., Imran, M., Gul, S., 2023. Heat transfer analysis in hydromagnetic flow of couple stress fluid in presence of homogeneous and heterogeneous chemical reactions over a porous oscillatory stretchable sheet. Adv. Mech. Eng., 15(2), p. 16878132231155824.
[18] Rana, S., Tabassum, R., Mehmood, R., Tag-eldin, E. M., Shah, R., 2024. Influence of Hall current & Lorentz force with nonlinear thermal radiation in an inclined slip flow of couple stress fluid over a Riga plate. Ain Shams Eng. J., 15(1), p. 102319.
[19] Swapna, D., Govardhan, K., Narender, G., Misra, S., 2023. Viscous Dissipation and Chemical Reaction on Radiate MHD Casson Nanofluid Past a Stretching Surface with a Slip Effect, J. Heat Mass Transf. Res., 10(2), pp. 315–328. doi: 10.22075/jhmtr.2024.31758.1477.
[20] Kumari, M. and Jain, S., 2020. Radiative flow of MHD casson fluid between two permeable channels filled with porous medium and non-linear chemical reaction.  Int. J. Adv. Sci. Technol., 29(8), pp. 838–845.
[21] Parmar, A. and Jain, S., 2019. Influence of Non-Linear Chemical Reaction on MHD Convective Flow for Maxwell Fluid Over Three. 8(4), pp. 671–682. doi: 10.1166/jon.2019.1639.
[22] Abbas, N., Nadeem, S., Saleem, A., Malik, M. Y., Issakhov, A. and Alharbi, F. M., 2021. Models base study of inclined MHD of hybrid nanofluid flow over nonlinear stretching cylinder. Chinese Journal of Physics, 69, pp. 109–117.
[23] Awan, A. U., Ali, B., Shah, S. A. A., Oreijah, M., Guedri, K., Eldin, S. M., 2023. Numerical analysis of heat transfer in Ellis hybrid nanofluid flow subject to a stretching cylinder. Case Stud. Therm. Eng., 49, p. 103222.
[24] Sohail, M. and Naz, R., 2020. Modified heat and mass transmission models in the magnetohydrodynamic flow of Sutterby nanofluid in stretching cylinder. Phys. A Stat. Mech. its Appl., 549, p. 124088.
[25] Mabood, F., Yusuf, T. A., Bognár, G., 2020. Features of entropy optimization on MHD couple stress nanofluid slip flow with melting heat transfer and nonlinear thermal radiation. Sci. Rep., 10(1), p. 19163.
[26] Afzal, Q., Akram, S., Ellahi, R., Sait, S. M., Chaudhry, F., 2021. Thermal and concentration convection in nanofluids for peristaltic flow of magneto couple stress fluid in a nonuniform channel. J. Therm. Anal. Calorim., 144, pp. 2203–2218.
[27] Prasad, K. V., Choudhari, R., Vaidya, H., Bhat, A., Animasaun, I. L., 2023. Analysis of couple stress nanofluid flow under convective condition in the temperature‐dependent fluid properties and Lorentz forces. Heat Transf., 52(1), pp. 216–235.
[28] Mahat, R., Shafie, S., and Januddi, F., 2021. Numerical analysis of mixed convection flow past a symmetric cylinder with viscous dissipation in viscoelastic nanofluid. CFD Lett., 13( 2), pp. 12–28.
[29] Sun, S., Li, S., Shaheen, S., Arain, M. B., Usman, Khan K. A. A numerical investigation of bio-convective electrically conducting water-based nanofluid flow on the porous plate with variable wall temperature. Numer. Heat Transf. Part A Appl., pp. 1–15. doi: 10.1080/10407782.2023.2242579.
[30] Fatima, N., Sooppy Nisar, K., Shaheen, S., Arain, M. B., Ijaz, N.,  Muhammad, T., 2023. A case study for heat and mass transfer of viscous fluid flow in double layer due to ciliated channel. Case Stud. Therm. Eng., 45, p. 102943. doi: https://doi.org/10.1016/j.csite.2023.102943.
[31] Huang, H., Shaheen, S., Nisar, K. S., Arain, M. B., 2024. Thermal and concentration analysis of two immiscible fluids flowing due to ciliary beating. Ain Shams Eng. J., 15(1), p. 102278.  doi: https://doi.org/10.1016/j.asej.2023.102278.
[32] Arain, M. B., Zeeshan, A., Alhodaly, M. S., Fasheng, L., Bhatti, M. M., 2022. Bioconvection nanofluid flow through vertical rigid parallel plates with the application of Arrhenius kinetics: a numerical study. Waves in Random and Complex Media, pp. 1–18. doi: 10.1080/17455030.2022.2123115.
[33] Reddy, Y. D., Goud, B. S., Nisar, K. S., Alshahrani, B., Mahmoud, M., Park, C., 2023. Heat absorption/generation effect on MHD heat transfer fluid flow along a stretching cylinder with a porous medium. Alexandria Eng. J., 64, pp. 659–666.
[34] Sudarmozhi, K., Iranian, D., Khan, I., 2023. Heat and mass transport of MHD viscoelastic fluid flow towards a permeable stretching cylinder. Int. Commun. Heat Mass Transf., 145, p. 106864.
[35] Hussain, Z., Hayat, T., Alsaedi, A., Ullah, I., 2021. On MHD convective flow of Williamson fluid with homogeneous-heterogeneous reactions: A comparative study of sheet and cylinder. Int. Commun. Heat Mass Transf., 120, p. 105060.
[36] Arain, M. B., Zeeshan, A., Bhatti, M. M., Alhodaly, M. S., Ellahi, R., 2023. Description of non-Newtonian bioconvective Sutterby fluid conveying tiny particles on a circular rotating disk subject to induced magnetic field. J. Cent. South Univ., 30(8), pp. 2599–2615. doi: 10.1007/s11771-023-5398-1.
[37] Sekhar, B. C., Kumar, P. V., Krishna, M.V., 2023. Changeable Heat and Mass Transport on Unsteady MHD Convective Flow Past an Infinite Vertical Porous Plate. J. Heat Mass Transf. Res., 10(2), pp. 207–222. doi: 10.22075/jhmtr.2023.31618.1469.
[38] Chaudhary, M. A., Merkin, J. H., 1995. A simple isothermal model for homogeneous-heterogeneous reactions in boundary-layer flow. I Equal diffusivities. Fluid Dyn. Res., 16(6), pp. 311–333. doi: 10.1016/0169-5983(95)00015-6.
[39] Malik, M. Y., Salahuddin, T., Hussain, A., Bilal, S., Awais, M., 2015. Homogeneous-heterogeneous reactions in Williamson fluid model over a stretching cylinder by using Keller box method. AIP Adv., 5(10).