[1] Stokes, V. K., 1966. Couple stresses in fluids. Phys. Fluids, 9(9), pp. 1709–1715. doi: 10.1063/1.1761925.
[2] Rani, H. P., Reddy, G. J., Kim, C. N., 2011. Numerical analysis of couple stress fluid past an infinite vertical cylinder. Eng. Appl. Comput. Fluid Mech., 5(2), pp. 159–169. doi: 10.1080/19942060.2011.11015360.
[3] Rani, H. P. and Reddy, G. J., 2013. Heatline visualization for conjugate heat transfer of a couple stress fluid from a vertical slender hollow cylinder. Int. Commun. Heat Mass Transf., 48, pp. 46–52. doi: 10.1016/j.icheatmasstransfer.2013.08.015.
[4] Rani, H. P., Reddy, G. J., Kim, C. N., Rameshwar, Y., 2015. Transient Couple Stress Fluid Past a Vertical Cylinder with Bejan’s Heat and Mass Flow Visualization for Steady-State. J. Heat Transfer, 137(3). doi: 10.1115/1.4029085.
[5] Ibrahim, W. and Gadisa, G., 2020. Double Stratified Mixed Convective Flow of Couple Stress Nanofluid past Inclined Stretching Cylinder Using Cattaneo-Christov Heat and Mass Flux Model. Adv. Math. Phys. doi: 10.1155/2020/4890152.
[6] Gajjela, N. and Garvandha, M., 2020. The influence of magnetized couple stress heat, and mass transfer flow in a stretching cylinder with convective boundary condition, cross-diffusion, and chemical reaction. Therm. Sci. Eng. Prog., 18, p. 100517. doi: 10.1016/j.tsep.2020.100517.
[7] Palaiah, S. S., Basha, H., Reddy, G. J., 2021. Magnetized couple stress fluid flow past a vertical cylinder under thermal radiation and viscous dissipation effects. Nonlinear Eng., 10(1), pp. 343–362. doi: 10.1515/nleng-2021-0027.
[8] Asad, S., Alsaedi, A. and Hayat, T., 2016. Flow of couple stress fluid with variable thermal conductivity. Appl. Math. Mech., 37, pp. 315–324.
[9] Saeed, A., Kumam, P., Gul, T., Alghamdi, W., Kumam, W., Khan, A., 2021. Darcy–Forchheimer couple stress hybrid nanofluids flow with variable fluid properties. Sci. Rep., 11(1), pp. 1–13. doi: 10.1038/s41598-021-98891-z.
[10] Bharty, M., Srivastava, A. K., Mahato, H., 2023. Stability of Magneto Double Diffusive Convection in Couple Stress Liquid with Chemical Reaction. J. Heat Mass Transf. Res., 10(2), pp. 171–190. doi: 10.22075/jhmtr.2023.30246.1432.
[11] Malik R. and Khan, M., 2018. Numerical study of homogeneous–heterogeneous reactions in Sisko fluid flow past a stretching cylinder. Results Phys., 8, pp. 64–70.
[12] Rashad, M. S., Manzoor, U., Khan, S. A., Liu, H., Muhammad, T., 2023. Numerical investigation of magnetized nanofluid flow with thermal radiation and homogeneous/heterogeneous reactions over a vertical cylinder. Case Stud. Therm. Eng., vol., 50, p. 103424.
[13] Giri, S. S., Das, K., Kundu, P. K., 2020. Homogeneous-heterogeneous reaction mechanism on MHD carbon nanotube flow over a stretching cylinder with prescribed heat flux using differential transform method. J. Comput. Des. Eng., 7(3), pp. 337–351. doi: 10.1093/jcde/qwaa028.
[14] Imtiaz, M., Mabood, F., Hayat, T., Alsaedi, A., 2019. Homogeneous-heterogeneous reactions in MHD radiative flow of second grade fluid due to a curved stretching surface. Int. J. Heat Mass Transf.,145, p. 11878.
[15] Jain, S. and Gupta, P., 2019. Second law analysis of MHD Casson and Maxwell fluid flow over a permeable stretching sheet with homogenous heterogeneous reactions and variable heat source. 57, pp. 385–399.
[16] Satya Narayana, P. V., Tarakaramu, N., Harish Babu, D., 2022. Influence of chemical reaction on MHD couple stress nanoliquid flow over a bidirectional stretched sheet. Int. J. Ambient Energy, 43(1), pp. 4928–4938.
[17] Naveed, M., Imran, M., Gul, S., 2023. Heat transfer analysis in hydromagnetic flow of couple stress fluid in presence of homogeneous and heterogeneous chemical reactions over a porous oscillatory stretchable sheet. Adv. Mech. Eng., 15(2), p. 16878132231155824.
[18] Rana, S., Tabassum, R., Mehmood, R., Tag-eldin, E. M., Shah, R., 2024. Influence of Hall current & Lorentz force with nonlinear thermal radiation in an inclined slip flow of couple stress fluid over a Riga plate. Ain Shams Eng. J., 15(1), p. 102319.
[19] Swapna, D., Govardhan, K., Narender, G., Misra, S., 2023. Viscous Dissipation and Chemical Reaction on Radiate MHD Casson Nanofluid Past a Stretching Surface with a Slip Effect, J. Heat Mass Transf. Res., 10(2), pp. 315–328. doi: 10.22075/jhmtr.2024.31758.1477.
[20] Kumari, M. and Jain, S., 2020. Radiative flow of MHD casson fluid between two permeable channels filled with porous medium and non-linear chemical reaction. Int. J. Adv. Sci. Technol., 29(8), pp. 838–845.
[21] Parmar, A. and Jain, S., 2019. Influence of Non-Linear Chemical Reaction on MHD Convective Flow for Maxwell Fluid Over Three. 8(4), pp. 671–682. doi: 10.1166/jon.2019.1639.
[22] Abbas, N., Nadeem, S., Saleem, A., Malik, M. Y., Issakhov, A. and Alharbi, F. M., 2021. Models base study of inclined MHD of hybrid nanofluid flow over nonlinear stretching cylinder. Chinese Journal of Physics, 69, pp. 109–117.
[23] Awan, A. U., Ali, B., Shah, S. A. A., Oreijah, M., Guedri, K., Eldin, S. M., 2023. Numerical analysis of heat transfer in Ellis hybrid nanofluid flow subject to a stretching cylinder. Case Stud. Therm. Eng., 49, p. 103222.
[24] Sohail, M. and Naz, R., 2020. Modified heat and mass transmission models in the magnetohydrodynamic flow of Sutterby nanofluid in stretching cylinder. Phys. A Stat. Mech. its Appl., 549, p. 124088.
[25] Mabood, F., Yusuf, T. A., Bognár, G., 2020. Features of entropy optimization on MHD couple stress nanofluid slip flow with melting heat transfer and nonlinear thermal radiation. Sci. Rep., 10(1), p. 19163.
[26] Afzal, Q., Akram, S., Ellahi, R., Sait, S. M., Chaudhry, F., 2021. Thermal and concentration convection in nanofluids for peristaltic flow of magneto couple stress fluid in a nonuniform channel. J. Therm. Anal. Calorim., 144, pp. 2203–2218.
[27] Prasad, K. V., Choudhari, R., Vaidya, H., Bhat, A., Animasaun, I. L., 2023. Analysis of couple stress nanofluid flow under convective condition in the temperature‐dependent fluid properties and Lorentz forces. Heat Transf., 52(1), pp. 216–235.
[28] Mahat, R., Shafie, S., and Januddi, F., 2021. Numerical analysis of mixed convection flow past a symmetric cylinder with viscous dissipation in viscoelastic nanofluid. CFD Lett., 13( 2), pp. 12–28.
[29] Sun, S., Li, S., Shaheen, S., Arain, M. B., Usman, Khan K. A. A numerical investigation of bio-convective electrically conducting water-based nanofluid flow on the porous plate with variable wall temperature. Numer. Heat Transf. Part A Appl., pp. 1–15. doi: 10.1080/10407782.2023.2242579.
[30] Fatima, N., Sooppy Nisar, K., Shaheen, S., Arain, M. B., Ijaz, N., Muhammad, T., 2023. A case study for heat and mass transfer of viscous fluid flow in double layer due to ciliated channel. Case Stud. Therm. Eng., 45, p. 102943. doi: https://doi.org/10.1016/j.csite.2023.102943.
[31] Huang, H., Shaheen, S., Nisar, K. S., Arain, M. B., 2024. Thermal and concentration analysis of two immiscible fluids flowing due to ciliary beating. Ain Shams Eng. J., 15(1), p. 102278. doi: https://doi.org/10.1016/j.asej.2023.102278.
[32] Arain, M. B., Zeeshan, A., Alhodaly, M. S., Fasheng, L., Bhatti, M. M., 2022. Bioconvection nanofluid flow through vertical rigid parallel plates with the application of Arrhenius kinetics: a numerical study. Waves in Random and Complex Media, pp. 1–18. doi: 10.1080/17455030.2022.2123115.
[33] Reddy, Y. D., Goud, B. S., Nisar, K. S., Alshahrani, B., Mahmoud, M., Park, C., 2023. Heat absorption/generation effect on MHD heat transfer fluid flow along a stretching cylinder with a porous medium. Alexandria Eng. J., 64, pp. 659–666.
[34] Sudarmozhi, K., Iranian, D., Khan, I., 2023. Heat and mass transport of MHD viscoelastic fluid flow towards a permeable stretching cylinder. Int. Commun. Heat Mass Transf., 145, p. 106864.
[35] Hussain, Z., Hayat, T., Alsaedi, A., Ullah, I., 2021. On MHD convective flow of Williamson fluid with homogeneous-heterogeneous reactions: A comparative study of sheet and cylinder. Int. Commun. Heat Mass Transf., 120, p. 105060.
[36] Arain, M. B., Zeeshan, A., Bhatti, M. M., Alhodaly, M. S., Ellahi, R., 2023. Description of non-Newtonian bioconvective Sutterby fluid conveying tiny particles on a circular rotating disk subject to induced magnetic field. J. Cent. South Univ., 30(8), pp. 2599–2615. doi: 10.1007/s11771-023-5398-1.
[37] Sekhar, B. C., Kumar, P. V., Krishna, M.V., 2023. Changeable Heat and Mass Transport on Unsteady MHD Convective Flow Past an Infinite Vertical Porous Plate. J. Heat Mass Transf. Res., 10(2), pp. 207–222. doi: 10.22075/jhmtr.2023.31618.1469.
[38] Chaudhary, M. A., Merkin, J. H., 1995. A simple isothermal model for homogeneous-heterogeneous reactions in boundary-layer flow. I Equal diffusivities. Fluid Dyn. Res., 16(6), pp. 311–333. doi: 10.1016/0169-5983(95)00015-6.
[39] Malik, M. Y., Salahuddin, T., Hussain, A., Bilal, S., Awais, M., 2015. Homogeneous-heterogeneous reactions in Williamson fluid model over a stretching cylinder by using Keller box method. AIP Adv., 5(10).