[1] Ho, C.J. and Cheng, Y.T., 1999. On cooling behavior of a vertical plate in a phase change material/water composite enclosure under pulsating heat load. Heat and mass transfer, 34(6), pp.509-515.
[2] Yan, S.R., Fazilati, M.A., Samani, N., Ghasemi, H.R., Toghraie, D., Nguyen, Q. and Karimipour, A., 2020. Energy efficiency optimization of the waste heat recovery system with embedded phase change materials in greenhouses: a thermo-economic-environmental study. Journal of Energy Storage, 30, p.101445
[3] Khan, R. J., Bhuiyan, Md. Z. H., Ahmed, D. H., 2020, Investigation of heat transfer of a building wall in the presence of phase change material (PCM). Energy and Built Environment, 1, pp. 199-206.
[4] Khodadadi, J. M., Zhang, Y., 2001, Effects of buoyancy-driven convection on melting within spherical containers. International Journal of Heat and Mass Transfer, 44, pp. 1605-1618.
[5] Assis, E., Katsaman, L., Ziskind, G., Letan, R., 2007, Numerical and experimental study of melting in a spherical shell. International Journal of Heat and Mass Transfer, 50, pp. 1790-1804.
[6] Tan, F. L., Hosseinizadeh, S. F., Khodadadi, J. M., Fan, L., 2009, Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule. International Journal of Heat and Mass Transfer, 52, pp. 3464-3472.
[7] Elmozughi, A. F., Solomon, L., Oztekin, A., Neti, S., 2014, Encapsulated phase change material for high temperature thermal energy storage Heat transfer analysis. International Journal of Heat and Mass Transfer, 78, pp. 1135-1144.
[8] Aadmi, M., Karkri, M., Hammouti, M. E., 2015, Heat transfer characteristics of thermal energy storage for PCM (phase change material) melting in horizontal tube: Numerical and experimental investigations. Energy, 85, pp. 339-352.
[9] Zeneli, M., Malgarinos, I., Nikolopoulos, A., Nikolopoulos, N., Grammelis, P., Karellas, S., Kakaras, E., 2019, Numerical simulation of a silicon-based latent heat thermal energy storage system operating at ultra-high temperatures. Applied Energy, 242, pp. 837-853.
[10] Mallya, N., Haussener, S., 2021, Buoyancy-driven melting and solidification heat transfer analysis in encapsulated phase change materials. International Journal of Heat and Mass Transfer, 164, 120525.
[11] Zhao, W., Elmozughi, A. F., Oztekin, A., Neti, S., 2013, Heat transfer analysis of encapsulated phase change material for thermal energy storage. International Journal of Heat and Mass Transfer, 63, pp. 323-335.
[12] Bayat, M., Faridzadeh, M. R., Toghraie, D., 2018, Investigation of finned heat sink performance with nano enhanced phase change material (NePCM). Thermal Science and Engineering Progress, 5, pp. 50-59.
[13] Shatikian, V., Ziskind, G., Letan, R., 2005, Numerical investigation of a PCM-based heat sink with internal fins. International Journal of Heat and Mass Transfer, 48, pp. 3689-3706.
[14] Aziz, S., Amin, N. A. M., Abdul Majid, M. S., Belusko, M., Bruno, F., 2018, CFD simulation of a TES tank Comprising a PCM encapsulated in sphere with heat transfer enhancement. Applied Thermal Engineering, 143, pp. 1085-1092.
[15] Mourad, A., Aissa, A., Abed, A. M., Smaisim, G. F., Toghraie, D., Fazilati, M. A., Younis, O., Guedri, K., Alizadeh, A., 2022, The numerical analysis of the melting process in a modified shell-and-tube phase change material heat storage system. Journal of Energy Storage, 55D, 105827.
[16] Rostami, J., 2020, Optimum Diameter and Location of Pipes Containing PCMs in a Channel in Latent and Sensible Heat Transfer. AUT Journal of Mechanical Engineering, 4, pp. 551-559.
[17] Hoffman, K. A., 1989, Computational Fluid Dynamics for Engineers, Engineering Education System, Austin, Texas.
[18] Raisee, M., 1999, Computation of Flow and Heat Transfer Through Two- and Three-Dimensional Rib-Roughed Passages (Doctoral Thesis, University of Manchester).
[19] Rhie, C. M., Chow, W. L., 1983, Numerical Study of the Turbulent Flow Past an Airfoil with Trading Edge Separation. AIAA J., 21 (11), pp. 1525-1535.
[20] Versteeg, H. K., Malalasekera, W., 2007, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Harlow, England: Pearson Education Ltd.
[21] Spalding, D. B., 1972, A Novel Finite Difference Formulation for Differential Expressions Involving Both First and Second Derivatives. International Journal for Numerical Methods in Engineering, 4, pp. 551-559.
[22] Patankar, S. V., Spalding, D. B., 1972, A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows. International Journal of Heat and Mass Transfer, 15, pp. 1787-1806.
[23] Taira, K., Colonius, T., 2007, The immersed boundary method: A projection approach. Journal of Computational Physics, 225, pp. 2118–2137.
[24] Bejan, A., 2013, Convection Heat Transfer, John Wiley& Sons, Hoboken, New Jersey, 4th ed.
[25] Holman, J. P., 1997, in: Heat Transfer, eighth ed. McGraw-Hill Inc., New York, pp. 218-282.