[1] Casanave, D., Duplan, J.L. and Freund, E., 2007. Diesel fuels from biomass. Pure and Applied Chemistry, 79(11), pp.2071-2081. doi: 10.1351/pac200779112071.
[2] Lloyd, A.C. and Cackette, T.A., 2001. Diesel engines: environmental impact and control. Journal of the Air & Waste Management Association, 51(6), pp. 809-847. doi: 10.1080/10473289.2001.10464315.
[3] Tomar, M. and Kumar, N., 2020. Influence of nanoadditives on the performance and emission characteristics of a CI engine fuelled with diesel, biodiesel, and blends–a review. Energy sources, part A: Recovery, utilization, and environmental effects, 42(23), pp. 2944-2961. doi: 10.1080/15567036.2019.1623347.
[4] Shaafi, T., Sairam, K., Gopinath, A., Kumaresan, G., and Velraj, R., 2015. Effect of dispersion of various nanoadditives on the performance and emission characteristics of a CI engine fuelled with diesel, biodiesel and blends—a review. Renewable and Sustainable Energy Reviews, 49, pp. 563-573. doi: 10.1016/j.rser.2015.04.086.
[5] WHO, 2016. Ambient air pollution: A global assessment of exposure and burden of disease. W.H. Organization.
[6] World Energy Outlook 2023 Free Dataset. March 2024, International Energy Agency (IEA).
[7] Shine, I., 2023. The Global Biofuel Alliance has just launched, but what exactly are biofuels? W.E. Forum.
[8] Kumar, R., Yadav, A.S., Sharma, A., Rajak, U., Verma, T.N., Alam, T., Tiwari, N. and Jawahar, C., 2023. Experimental analysis of a diesel engine run on non-conventional fuel blend at different preheating temperatures. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, pp. 09544089231190754. doi: 10.1177/0954408923119075.
[9] Goga, G., Mahla, S.K., Chauhan, B.S., Yadav, A.S., Chakroborty, S., Garg, J. and Garg, S.B., 2023. Predication of performance and emissions characteristics adual fuel engine energized with liquid and gaseous materials by Artificial neural network. Materials Today: Proceedings. doi: 10.1016/j.matpr.2023.01.315.
[10] Kumar, P., Darsigunta, A., Mouli, B.C., Sharma, V.K., Sharma, N. and Yadav, A.S., 2021. Analysis of intake swirl in a compression ignition engine at different intake valve lifts. Materials Today: Proceedings, 47, pp. 2869-2874. doi: 10.1016/j.matpr.2021.03.663.
[11] Rao, G.A.P. and Sharma, T.K., 2020. Engine emission control technologies: design modifications and pollution mitigation techniques. Apple Academic Press. doi: 10.1201/9780429322228.
[12] Ying, W., Longbao, Z. and Hewu, W., 2006. Diesel emission improvements by the use of oxygenated DME/diesel blend fuels. Atmospheric Environment, 40(13), pp. 2313-2320. doi: 10.1016/j.atmosenv.2005.12.016.
[13] Song, J., Cheenkachorn, K., Wang, J., Perez, J., Boehman, A.L., Young, P.J. and Waller, F.J., 2002. Effect of oxygenated fuel on combustion and emissions in a light-duty turbo diesel engine. Energy & fuels, 16(2), pp.294-301. doi: 10.1021/ef010167t.
[14] Hosseinzadeh-Bandbafha, H., Tabatabaei, M., Aghbashlo, M., Khanali, M. and Demirbas, A., 2018. A comprehensive review on the environmental impacts of diesel/biodiesel additives. Energy Conversion and Management, 174, pp. 579-614. doi: 10.1016/j.enconman.2018.08.050.
[15] Shah, P.R. and Ganesh, A., 2016. A comparative study on influence of fuel additives with edible and non-edible vegetable oil based on fuel characterization and engine characteristics of diesel engine. Applied thermal engineering, 102, pp. 800-812. doi: 10.1016/j.applthermaleng.2016.03.128.
[16] Saxena, V., Kumar, N. and Saxena, V.K., 2017. A comprehensive review on combustion and stability aspects of metal nanoparticles and its additive effect on diesel and biodiesel fuelled CI engine. Renewable and Sustainable Energy Reviews, 70, pp.563-588. doi: 10.1016/j.rser.2016.11.067.
[17] Kumar, S., Dinesha, P. and Bran, I., 2019. Experimental investigation of the effects of nanoparticles as an additive in diesel and biodiesel fuelled engines: a review. Biofuels, 10(5), pp. 615-622. doi: 10.1080/17597269.2017.1332294.
[18] Fuskele, V. and Sarviya, R.M., 2017. Recent developments in nanoparticles synthesis, preparation and stability of nanofluids. Materials Today: Proceedings, 4(2), pp. 4049-4060. doi: 10.1016/j.matpr.2017.02.307.
[19] Paramashivaiah, B.M. and Rajashekhar, C.R., 2016, September. Studies on effect of various surfactants on stable dispersion of graphene nano particles in simarouba biodiesel. In IOP conference series: materials science and engineering (Vol. 149, No. 1, p. 012083). IOP Publishing.
[20] Soukht Saraee, H., Jafarmadar, S., Taghavifar, H. and Ashrafi, S.J., 2015. Reduction of emissions and fuel consumption in a compression ignition engine using nanoparticles. International journal of environmental science and technology, 12, pp. 2245-2252. doi: 10.1007/s13762-015-0759-4.
[21] Soni, G.S., Rathod, P.P. and Goswami, J.J., 2015. Performance and emission characteristics of CI engine using diesel and biodiesel blends with nanoparticles as additive-A review study. International Journal of Engineering Development and Research, 3(4), pp. 879-884.
[22] Gupta, H.K., Agrawal, G.D. and Mathur, J., 2012. An overview of Nanofluids: A new media towards green environment. International Journal of environmental sciences, 3(1), pp.433-440. doi: 10.6088/ijes.2012030131042.
[23] Senthilraja, S., Karthikeyan, M. and Gangadevi, R., 2010. Nanofluid applications in future automobiles: comprehensive review of existing data. Nano-Micro Letters, 2, pp. 306-310. doi: 10.1007/BF03353859.
[24] Zhu, D., Li, X., Wang, N., Wang, X., Gao, J. and Li, H., 2009. Dispersion behavior and thermal conductivity characteristics of Al2O3–H2O nanofluids. Current Applied Physics, 9(1), pp. 131-139. doi: 10.1016/j.cap.2007.12.008.
[25] Moravej, M., Noghrehabadi, A., Esmaeilinasab, A.L.I. and Khajehpour, E., 2020. The effect of SiO2 nanoparticle on the performance of photovoltaic thermal system: Experimental and Theoretical approach. Journal of Heat and Mass Transfer Research, 7(1), pp. 11-24. doi: 10.22075/JHMTR.2020.18904.1254.
[26] Parvar, M., Saedodin, S. and Rostamian, S.H., 2020. Experimental study on the thermal conductivity and viscosity of transformer oil-based nanofluid containing ZnO nanoparticles. Journal of Heat and Mass Transfer Research, 7(1), pp. 77-84. doi: 10.22075/JHMTR.2020.19303.1267.
[27] Aminian, M.R., Miroliaei, A.R. and Mirzaei Ziapour, B., 2019. Numerical study of flow and heat transfer characteristics of CuO/H2O nanofluid within a mini tube. Journal of Heat and Mass Transfer Research, 6(1), pp. 11-20. doi: 10.22075/JHMTR.2018.14156.1205.
[28] Barik, A.K. and Nayak, B., 2017. Fluid flow and heat transfer characteristics in a curved rectangular duct using Al2O3-water nanofluid. Journal of Heat and Mass Transfer Research, 4(2), pp.103-115. doi: 10.22075/JHMTR.2017.1689.1115.
[29] Mollamahdi, M., Abbaszadeh, M. and Sheikhzadeh, G.A., 2016. Flow field and heat transfer in a channel with a permeable wall filled with Al2O3-Cu/water micropolar hybrid nanofluid, effects of chemical reaction and magnetic field. Journal of Heat and Mass Transfer Research, 3(2), pp.101-114. doi: 10.22075/JHMTR.2016.447.
[30] Nath, G., 2018. Physico-Acoustic Study on Thermal Conductivity of Silver Nanofluid. Journal of Heat and Mass Transfer Research, 5(2), pp. 105-110. doi: 10.22075/JHMTR.2018.12036.1175.
[31] Raei, B., 2021. Statistical analysis of nanofluid heat transfer in a heat exchanger using Taguchi method. Journal of heat and mass transfer research, 8(1), pp. 29-38. doi: 10.22075/JHMTR.2020.20678.1287.
[32] Basu, S.and Miglani, A., 2016. Combustion and heat transfer characteristics of nanofluid fuel droplets: A short review. International Journal of Heat and Mass Transfer, 96, pp. 482-503 doi: 10.1016/j.ijheatmasstransfer.2016.01.053.
[33] Nanthagopal, K., Ashok, B., Tamilarasu, A., Johny, A. and Mohan, A., 2017. Influence on the effect of zinc oxide and titanium dioxide nanoparticles as an additive with Calophyllum inophyllum methyl ester in a CI engine. Energy Conversion and Management, 146, pp. 8-19. doi: 10.1016/j.enconman.2017.05.021.
[34] Ganesh, D. and Gowrishankar, G., 2011, September. Effect of nano-fuel additive on emission reduction in a biodiesel fuelled CI engine. In 2011 International conference on electrical and control engineering (pp. 3453-3459). IEEE.
[35] Hosseini, S.H., Taghizadeh-Alisaraei, A., Ghobadian, B. and Abbaszadeh-Mayvan, A., 2017. Performance and emission characteristics of a CI engine fuelled with carbon nanotubes and diesel-biodiesel blends. Renewable energy, 111, pp.201-213. doi: 10.1016/j.renene.2017.04.013.
[36] Hoseini, S.S., Najafi, G., Ghobadian, B., Ebadi, M.T., Mamat, R. and Yusaf, T.J.R.E., 2020. Performance and emission characteristics of a CI engine using graphene oxide (GO) nano-particles additives in biodiesel-diesel blends. Renewable Energy, 145, pp.458-465. doi: 10.1016/j.renene.2019.06.006.
[37] Ghanbari, M., Najafi, G., Ghobadian, B., Yusaf, T., Carlucci, A.P. and Kiani, M.K.D., 2017. Performance and emission characteristics of a CI engine using nano particles additives in biodiesel-diesel blends and modeling with GP approach. Fuel, 202, pp. 699-716. doi: 10.1016/j.fuel.2017.04.117.
[38] Gumus, S., Ozcan, H., Ozbey, M. and Topaloglu, B., 2016. Aluminum oxide and copper oxide nanodiesel fuel properties and usage in a compression ignition engine. Fuel, 163, pp. 80-87. doi: 10.1016/j.fuel.2015.09.048.
[39] Mehta, R.N., Chakraborty, M. and Parikh, P.A., 2014. Nanofuels: Combustion, engine performance and emissions. Fuel, 120, pp. 91-97. doi: 10.1016/j.fuel.2013.12.008.
[40] Kannan, G.R., Karvembu, R. and Anand, R.J.A.E., 2011. Effect of metal based additive on performance emission and combustion characteristics of diesel engine fuelled with biodiesel. Applied energy, 88(11), pp.3694-3703. doi: 10.1016/j.apenergy.2011.04.043.
[41] Ağbulut, Ü., 2022. Understanding the role of nanoparticle size on energy, exergy, thermoeconomic, exergoeconomic, and sustainability analyses of an IC engine: A thermodynamic approach. Fuel Processing Technology, 225, p. 107060. doi: 10.1016/j.fuproc.2021.107060.
[42] Ağbulut, Ü., Sarıdemir, S., Rajak, U., Polat, F., Afzal, A. and Verma, T.N., 2021. Effects of high-dosage copper oxide nanoparticles addition in diesel fuel on engine characteristics. Energy, 229, p.120611. doi: 10.1016/j.energy.2021.120611.
[43] Ağbulut, Ü., Karagöz, M., Sarıdemir, S. and Öztürk, A., 2020. Impact of various metal-oxide based nanoparticles and biodiesel blends on the combustion, performance, emission, vibration and noise characteristics of a CI engine. Fuel, 270, p.117521. doi: 10.1016/j.fuel.2020.117521.
[44] Roy, R.G., Ağbulut, Ü., Koshy, C.P., Alex, Y., Sailesh, K.S., Khan, S.A., Jilte, R., Linul, E. and Asif, M., 2024. Impact of synthesizing surfactant-modified catalytic ceria nanoparticles on the performance and environmental behaviors of coconut oil/diesel-fueled CI engine: An optimization attempt. Energy, 295, p.130825. doi: 10.1016/j.energy.2024.130825.
[45] Karagoz, M., Uysal, C., Agbulut, U. and Saridemir, S., 2021. Exergetic and exergoeconomic analyses of a CI engine fueled with diesel-biodiesel blends containing various metal-oxide nanoparticles. Energy, 214, p.118830. doi: 10.1016/j.energy.2020.118830.
[46] Siddartha, G.N.V., Ramakrishna, C.S., Kujur, P.K., Rao, Y.A., Dalela, N., Yadav, A.S. and Sharma, A., 2022. Effect of fuel additives on internal combustion engine performance and emissions. Materials Today: Proceedings, 63, pp.A9-A14. doi: 10.1016/j.matpr.2022.06.307.
[47] Hoang, A.T., Le, M.X., Nižetić, S., Huang, Z., Ağbulut, Ü., Veza, I., Said, Z., Le, A.T., Tran, V.D. and Nguyen, X.P., 2022. Understanding behaviors of compression ignition engine running on metal nanoparticle additives-included fuels: a control comparison between biodiesel and diesel fuel. Fuel, 326, p.124981. doi: 10.1016/j.fuel.2022.124981.
[48] Spikes, H., 2015. Friction modifier additives. Tribology Letters, 60, pp.1-26. doi: 10.1007/s11249-015-0589-z.
[49] Youssef, A. and Ibrahim, A., 2024. An experimental evaluation for the performance of a single cylinder CI engine fueled by a Diesel-Biodiesel blend with alcohols and Zinc-Aluminate nanoparticles as additives. Materials Today: Proceedings. doi: 10.1016/j.matpr.2024.04.015.
[50] Yuvarajan, D., Babu, M.D., BeemKumar, N. and Kishore, P.A., 2018. Experimental investigation on the influence of titanium dioxide nanofluid on emission pattern of biodiesel in a diesel engine. Atmospheric Pollution Research, 9(1), pp.47-52.
[51] Prabakaran, B. and Udhoji, A., 2016. Experimental investigation into effects of addition of zinc oxide on performance, combustion and emission characteristics of diesel-biodiesel-ethanol blends in CI engine. Alexandria Engineering Journal, 55(4), pp.3355-3362. doi: 10.1016/j.aej.2016.08.022.
[52] Prabu, A., 2018. Nanoparticles as additive in biodiesel on the working characteristics of a DI diesel engine. Ain shams Engineering journal, 9(4), pp.2343-2349. doi: 10.1016/j.asej.2017.04.004.
[53] Sajith, V., Sobhan, C.B. and Peterson, G.P., 2010. Experimental investigations on the effects of cerium oxide nanoparticle fuel additives on biodiesel. Advances in Mechanical Engineering, 2, p.581407. doi: 10.1155/2010/581407.
[54] Chandrasekaran, V., Arthanarisamy, M., Nachiappan, P., Dhanakotti, S. and Moorthy, B., 2016. The role of nano additives for biodiesel and diesel blended transportation fuels. Transportation Research Part D: Transport and Environment, 46, pp.145-156. doi: 10.1016/j.trd.2016.03.015.
[55] Jayanthi, P. and Rao, M.S., 2016. Effects of nanoparticles additives on performance and emissions characteristics of a DI diesel engine fuelled with biodiesel. International Journal of Advances in Engineering & Technology, 9(6), p.689. doi: 10.7323/ijaet/v9_iss6.
[56] Annamalai, M., Dhinesh, B., Nanthagopal, K., SivaramaKrishnan, P., Lalvani, J.I.J., Parthasarathy, M. and Annamalai, K., 2016. An assessment on performance, combustion and emission behavior of a diesel engine powered by ceria nanoparticle blended emulsified biofuel. Energy conversion and management, 123, pp.372-380. doi: 10.1016/j.enconman.2016.06.062.
[57] Devarajan, Y., Munuswamy, D.B. and Mahalingam, A., 2017. Performance, combustion and emission analysis on the effect of ferrofluid on neat biodiesel. Process Safety and Environmental Protection, 111, pp.283-291. doi: 10.1016/j.psep.2017.07.021.
[58] Shaafi, T. and Velraj, R.J.R.E., 2015. Influence of alumina nanoparticles, ethanol and isopropanol blend as additive with diesel–soybean biodiesel blend fuel: Combustion, engine performance and emissions. Renewable Energy, 80, pp.655-663. doi: 10.1016/j.renene.2015.02.042.
[59] Özgür, T., Özcanli, M. and Aydin, K., 2015. Investigation of nanoparticle additives to biodiesel for improvement of the performance and exhaust emissions in a compression ignition engine. International journal of green energy, 12(1), pp.51-56. doi: 10.1080/15435075.2014.889011.
[60] Aalam, C.S., Saravanan, C.G. and Kannan, M., 2015. Experimental investigations on a CRDI system assisted diesel engine fuelled with aluminium oxide nanoparticles blended biodiesel. Alexandria engineering journal, 54(3), pp.351-358. doi: 10.1016/j.aej.2015.04.009.
[61] Sadhik Basha, J. and Anand, R.B., 2013. The influence of nano additive blended biodiesel fuels on the working characteristics of a diesel engine. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 35, pp.257-264. doi: 10.1007/s40430-013-0023-0.
[62] Gürü, M., Karakaya, U., Altıparmak, D. and Alıcılar, A., 2002. Improvement of diesel fuel properties by using additives. Energy conversion and Management, 43(8), pp.1021-1025. doi: 10.1016/S0196-8904(01)00094-2.
[63] Vellaiyan, S. and Partheeban, C.A., 2020. Combined effect of water emulsion and ZnO nanoparticle on emissions pattern of soybean biodiesel fuelled diesel engine. Renewable Energy, 149, pp.1157-1166. doi: 10.1016/j.renene.2019.10.101.
[64] Choi, Y., Lee, C., Hwang, Y., Park, M., Lee, J., Choi, C. and Jung, M., 2009. Tribological behavior of copper nanoparticles as additives in oil. Current Applied Physics, 9(2), pp. e124-e127. doi: 10.1016/j.cap.2008.12.050.
[65] Mortier, R.M., Orszulik, S.T. and Fox, M.F., 2010. Chemistry and technology of lubricants. Vol. 107115. Springer. doi: 10.1007/978-1-4020-8662-5.
[66] Barnes, A.M., Bartle, K.D. and Thibon, V.R., 2001. A review of zinc dialkyldithiophosphates (ZDDPS): characterisation and role in the lubricating oil. Tribology international, 34(6), pp.389-395. doi: 10.1016/S0301-679X(01)00028-7.
[67] Rudnick, L.R., 2009. Lubricant additives: chemistry and applications. CRC press. doi: 10.1201/9781420059656.
[68] Bakunin, V.N., Suslov, A.Y., Kuzmina, G.N., Parenago, O.P. and Topchiev, A.V., 2004. Synthesis and application of inorganic nanoparticles as lubricant components–a review. Journal of Nanoparticle Research, 6, pp.273-284. doi: 10.1023/B:NANO.0000034720.79452.e3.
[69] Li, X., Cao, Z., Zhang, Z. and Dang, H., 2006. Surface-modification in situ of nano-SiO2 and its structure and tribological properties. Applied surface science, 252(22), pp.7856-7861. doi: 10.1016/j.apsusc.2005.09.068.
[70] Battez, A.H., González, R., Viesca, J.L., Fernández, J.E., Fernández, J.D., Machado, A., Chou, R. and Riba, J., 2008. CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants. Wear, 265(3-4), pp.422-428. doi: 10.1016/j.wear.2007.11.013.
[71] Cellard, A., Garnier, V., Fantozzi, G., Baret, G. and Fort, P., 2009. Wear resistance of chromium oxide nanostructured coatings. Ceramics International, 35(2), pp.913-916. doi: 10.1016/j.ceramint.2008.02.022.
[72] Hwang, Y., Lee, C., Choi, Y., Cheong, S., Kim, D., Lee, K., Lee, J. and Kim, S.H., 2011. Effect of the size and morphology of particles dispersed in nano-oil on friction performance between rotating discs. Journal of Mechanical Science and Technology, 25, pp.2853-2857. doi: 10.1007/s12206-011-0724-1.
[73] Ali, Z.A.A.A., Takhakh, A.M. and Al-Waily, M., 2022. A review of use of nanoparticle additives in lubricants to improve its tribological properties. Materials Today: Proceedings, 52, pp.1442-1450. doi: 10.1016/j.matpr.2021.11.193.
[74] Waqas, M., Zahid, R., Bhutta, M.U., Khan, Z.A. and Saeed, A., 2021. A review of friction performance of lubricants with nano additives. Materials, 14(21), p.6310. doi: 10.3390/ma14216310
[75] Shahnazar, S., Bagheri, S. and Abd Hamid, S.B., 2016. Enhancing lubricant properties by nanoparticle additives. International journal of hydrogen energy, 41(4), pp.3153-3170. doi: 10.1016/j.ijhydene.2015.12.040.
[76] Srivyas, P.D. and Charoo, M.S., 2018. A Review on Tribological Characterization of Lubricants with Nano Additives for Automotive Applications. Tribology in Industry, 40(4). doi: 10.24874/ti.2018.40.04.08.
[77] Wu, Y.Y., Tsui, W.C. and Liu, T.C., 2007. Experimental analysis of tribological properties of lubricating oils with nanoparticle additives. Wear, 262(7-8), pp. 819-825. doi: 10.1016/j.wear.2006.08.021.
[78] Mangam, V., Bhattacharya, S., Das, K. and Das, S., 2010. Friction and wear behavior of Cu–CeO2 nanocomposite coatings synthesized by pulsed electrodeposition. Surface and Coatings Technology, 205(3), pp.801-805. doi: 10.1016/j.surfcoat.2010.07.119.
[79] Jiao, D., Zheng, S., Wang, Y., Guan, R. and Cao, B., 2011. The tribology properties of alumina/silica composite nanoparticles as lubricant additives. Applied Surface Science, 257(13), pp.5720-5725. doi: 10.1016/j.apsusc.2011.01.084.
[80] Battez, A.H., Viesca, J.L., González, R., Blanco, D., Asedegbega, E. and Osorio, A., 2010. Friction reduction properties of a CuO nanolubricant used as lubricant for a NiCrBSi coating. Wear, 268(1-2), pp.325-328. doi: 10.1016/j.wear.2009.08.018.
[81] Song, X., Zheng, S., Zhang, J., Li, W., Chen, Q. and Cao, B., 2012. Synthesis of monodispersed ZnAl2O4 nanoparticles and their tribology properties as lubricant additives. Materials Research Bulletin, 47(12), pp.4305-4310. doi: 10.1016/j.materresbull.2012.09.013.
[82] Shi, G., Zhang, M.Q., Rong, M.Z., Wetzel, B. and Friedrich, K., 2004. Sliding wear behavior of epoxy containing nano-Al2O3 particles with different pretreatments. Wear, 256(11-12), pp.1072-1081. doi: 10.1016/S0043-1648(03)00533-7.
[83] Kirloskar Oil Engines Limited. 2024, [05-05-2024], Available from: https://www.kirloskaroilengines.com/.
[84] Castrol GTX Diesel 15W-40. October 2023 [05-05-2024]; Available from: https://msdspds.castrol.com/msdspds/msdspds.nsf/CastrolResults?OpenForm&c=India%20(IN)&l=English%20(GB)&p=GTX%20DIESEL%2015W-40&n=&b=All&t=PDS&autosearch=No&autoload=No&sitelang=EN&output=Full&spu=Lubricants&unrestrictedmb=No&cols=0&_ga=2.262209164.1659088950.1714848024-1839148607.1714848024.
[85] BANDELIN electronic GmbH & Co. KG Germany. [cited 2024 17th May]; Available from: https://bandelin.com/en/shop/sonorex-digitec-ultrasonic-bathrooms/sonorex-digitec-dt-514-h/.
[86] ASTM, D 446 : Standard Speci®cations and Operating Instructions for Glass Capillary Kinematic Viscometers, 1999. ASTM, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959, United States.