Impact of Nano-Fuel Additives and Nano-Lubricant Oil Additives on Diesel Engine Performance and Emission Characteristics

Document Type : Full Length Research Article

Authors

1 Department of Mechanical Engineering, Shri S’ad Vidya Mandal Institute of Technology, Bharuch, 392002, India

2 Department of Mechanical Engineering, Government Engineering College, Bharuch, 392002, India

3 Department of Mechanical Engineering, Rao Birender Singh State Institute of Engineering & Technology, Rewari, 123411, India

Abstract

Fuel saving and emission control in transportation is a global critical issue, so research is required to concentrate on the energy conservation of diesel engines. Generally, in an internal combustion Engine, around 66 % of the total heat is lost and, around 33% is used for Brake Power. It is very important to improve the energy level of the engine in the field of automobiles, and this will be shown in the heat balance sheet of diesel engines. An attempt has been made to fulfill the above requirement by adding CuO and ZnO nano-additives to pure diesel fuel and Al2O3 and ZnO nano-lubricant additives to SAE 15W-40 engine lubricant oil by sonication process. Experimental work on a vertical twin-cylinder four-stroke, water-cooled, advanced computerized diesel engine was carried out with no load to full load condition using a computerised eddy current dynamometer attachment. The performance of the engine is evaluated by considering specific fuel consumption, brake thermal, mechanical, and volumetric efficiency, and exhaust emission. Results show that Specific fuel consumption is reduced by about 14.98%, Brake thermal efficiency is increased by about 17.62%, and Mechanical efficiency is increased by about 3.94%, respectively, using both nano fuel additives and nano lubricant additives. For exhaust, the emission is reduced by 20.04%, 10.25% for CO and NOx, and increased in CO2 by 29.16%. With the application of nano additives in fuel as well as in lubricating oil, the overall thermal performance can be appreciably improved, and the exhaust gas pollutant from the engine can be significantly reduced.

Keywords

Main Subjects


[1]    Casanave, D., Duplan, J.L. and Freund, E., 2007. Diesel fuels from biomass. Pure and Applied Chemistry, 79(11), pp.2071-2081. doi: 10.1351/pac200779112071.
[2]    Lloyd, A.C. and Cackette, T.A., 2001. Diesel engines: environmental impact and control. Journal of the Air & Waste Management Association, 51(6), pp. 809-847. doi: 10.1080/10473289.2001.10464315.
[3]    Tomar, M. and Kumar, N., 2020. Influence of nanoadditives on the performance and emission characteristics of a CI engine fuelled with diesel, biodiesel, and blends–a review. Energy sources, part A: Recovery, utilization, and environmental effects, 42(23), pp. 2944-2961. doi: 10.1080/15567036.2019.1623347.
[4]    Shaafi, T., Sairam, K., Gopinath, A., Kumaresan, G., and Velraj, R., 2015. Effect of dispersion of various nanoadditives on the performance and emission characteristics of a CI engine fuelled with diesel, biodiesel and blends—a review. Renewable and Sustainable Energy Reviews, 49, pp. 563-573. doi: 10.1016/j.rser.2015.04.086.
[5]    WHO, 2016. Ambient air pollution: A global assessment of exposure and burden of disease. W.H. Organization.
[6]    World Energy Outlook 2023 Free Dataset. March 2024, International Energy Agency (IEA).
[7]    Shine, I., 2023. The Global Biofuel Alliance has just launched, but what exactly are biofuels? W.E. Forum.
[8]    Kumar, R., Yadav, A.S., Sharma, A., Rajak, U., Verma, T.N.,  Alam, T., Tiwari, N. and Jawahar, C., 2023. Experimental analysis of a diesel engine run on non-conventional fuel blend at different preheating temperatures. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, pp. 09544089231190754. doi: 10.1177/0954408923119075.
[9]    Goga, G., Mahla, S.K., Chauhan, B.S., Yadav, A.S., Chakroborty, S., Garg, J. and Garg, S.B., 2023. Predication of performance and emissions characteristics adual fuel engine energized with liquid and gaseous materials by Artificial neural network. Materials Today: Proceedings. doi: 10.1016/j.matpr.2023.01.315.
[10]    Kumar, P., Darsigunta, A., Mouli, B.C., Sharma, V.K., Sharma, N. and Yadav, A.S., 2021. Analysis of intake swirl in a compression ignition engine at different intake valve lifts. Materials Today: Proceedings, 47, pp. 2869-2874. doi: 10.1016/j.matpr.2021.03.663.
[11]    Rao, G.A.P. and Sharma, T.K., 2020. Engine emission control technologies: design modifications and pollution mitigation techniques. Apple Academic Press. doi: 10.1201/9780429322228.
[12]    Ying, W., Longbao, Z. and Hewu, W., 2006. Diesel emission improvements by the use of oxygenated DME/diesel blend fuels. Atmospheric Environment, 40(13), pp. 2313-2320. doi: 10.1016/j.atmosenv.2005.12.016.
[13]    Song, J., Cheenkachorn, K., Wang, J., Perez, J., Boehman, A.L., Young, P.J. and Waller, F.J., 2002. Effect of oxygenated fuel on combustion and emissions in a light-duty turbo diesel engine. Energy & fuels, 16(2), pp.294-301. doi: 10.1021/ef010167t.
[14]    Hosseinzadeh-Bandbafha, H., Tabatabaei, M., Aghbashlo, M., Khanali, M. and Demirbas, A., 2018. A comprehensive review on the environmental impacts of diesel/biodiesel additives. Energy Conversion and Management, 174, pp. 579-614. doi: 10.1016/j.enconman.2018.08.050.
[15]    Shah, P.R. and Ganesh, A., 2016. A comparative study on influence of fuel additives with edible and non-edible vegetable oil based on fuel characterization and engine characteristics of diesel engine. Applied thermal engineering, 102, pp. 800-812. doi: 10.1016/j.applthermaleng.2016.03.128.
[16]    Saxena, V., Kumar, N. and Saxena, V.K., 2017. A comprehensive review on combustion and stability aspects of metal nanoparticles and its additive effect on diesel and biodiesel fuelled CI engine. Renewable and Sustainable Energy Reviews, 70, pp.563-588. doi: 10.1016/j.rser.2016.11.067.
[17]    Kumar, S., Dinesha, P. and Bran, I., 2019. Experimental investigation of the effects of nanoparticles as an additive in diesel and biodiesel fuelled engines: a review. Biofuels, 10(5), pp. 615-622. doi: 10.1080/17597269.2017.1332294.
[18]    Fuskele, V. and Sarviya, R.M., 2017. Recent developments in nanoparticles synthesis, preparation and stability of nanofluids. Materials Today: Proceedings, 4(2), pp. 4049-4060. doi: 10.1016/j.matpr.2017.02.307.
[19]    Paramashivaiah, B.M. and Rajashekhar, C.R., 2016, September. Studies on effect of various surfactants on stable dispersion of graphene nano particles in simarouba biodiesel. In IOP conference series: materials science and engineering (Vol. 149, No. 1, p. 012083). IOP Publishing.
[20]    Soukht Saraee, H., Jafarmadar, S., Taghavifar, H. and Ashrafi, S.J., 2015. Reduction of emissions and fuel consumption in a compression ignition engine using nanoparticles. International journal of environmental science and technology, 12, pp. 2245-2252. doi: 10.1007/s13762-015-0759-4.
[21]    Soni, G.S., Rathod, P.P. and Goswami, J.J., 2015. Performance and emission characteristics of CI engine using diesel and biodiesel blends with nanoparticles as additive-A review study. International Journal of Engineering Development and Research, 3(4), pp. 879-884. 
[22]    Gupta, H.K., Agrawal, G.D. and Mathur, J., 2012. An overview of Nanofluids: A new media towards green environment. International Journal of environmental sciences, 3(1), pp.433-440. doi: 10.6088/ijes.2012030131042.
[23]    Senthilraja, S., Karthikeyan, M. and Gangadevi, R., 2010. Nanofluid applications in future automobiles: comprehensive review of existing data. Nano-Micro Letters, 2, pp. 306-310. doi: 10.1007/BF03353859.
[24]    Zhu, D., Li, X., Wang, N., Wang, X., Gao, J. and Li, H., 2009. Dispersion behavior and thermal conductivity characteristics of Al2O3–H2O nanofluids. Current Applied Physics, 9(1), pp. 131-139. doi: 10.1016/j.cap.2007.12.008.
[25]    Moravej, M., Noghrehabadi, A., Esmaeilinasab, A.L.I. and Khajehpour, E., 2020. The effect of SiO2 nanoparticle on the performance of photovoltaic thermal system: Experimental and Theoretical approach. Journal of Heat and Mass Transfer Research, 7(1), pp. 11-24. doi: 10.22075/JHMTR.2020.18904.1254.
[26]    Parvar, M., Saedodin, S. and Rostamian, S.H., 2020. Experimental study on the thermal conductivity and viscosity of transformer oil-based nanofluid containing ZnO nanoparticles. Journal of Heat and Mass Transfer Research, 7(1), pp. 77-84. doi: 10.22075/JHMTR.2020.19303.1267.
[27]    Aminian, M.R., Miroliaei, A.R. and Mirzaei Ziapour, B., 2019. Numerical study of flow and heat transfer characteristics of CuO/H2O nanofluid within a mini tube. Journal of Heat and Mass Transfer Research, 6(1), pp. 11-20. doi: 10.22075/JHMTR.2018.14156.1205.
[28]    Barik, A.K. and Nayak, B., 2017. Fluid flow and heat transfer characteristics in a curved rectangular duct using Al2O3-water nanofluid. Journal of Heat and Mass Transfer Research, 4(2), pp.103-115. doi: 10.22075/JHMTR.2017.1689.1115.
[29]    Mollamahdi, M., Abbaszadeh, M. and Sheikhzadeh, G.A., 2016. Flow field and heat transfer in a channel with a permeable wall filled with Al2O3-Cu/water micropolar hybrid nanofluid, effects of chemical reaction and magnetic field. Journal of Heat and Mass Transfer Research, 3(2), pp.101-114. doi: 10.22075/JHMTR.2016.447.
[30]    Nath, G., 2018. Physico-Acoustic Study on Thermal Conductivity of Silver Nanofluid. Journal of Heat and Mass Transfer Research, 5(2), pp. 105-110. doi: 10.22075/JHMTR.2018.12036.1175.
[31]    Raei, B., 2021. Statistical analysis of nanofluid heat transfer in a heat exchanger using Taguchi method. Journal of heat and mass transfer research, 8(1), pp. 29-38. doi: 10.22075/JHMTR.2020.20678.1287.
[32]    Basu, S.and Miglani, A., 2016. Combustion and heat transfer characteristics of nanofluid fuel droplets: A short review. International Journal of Heat and Mass Transfer, 96, pp. 482-503 doi: 10.1016/j.ijheatmasstransfer.2016.01.053.
[33]    Nanthagopal, K., Ashok, B., Tamilarasu, A., Johny, A. and Mohan, A., 2017. Influence on the effect of zinc oxide and titanium dioxide nanoparticles as an additive with Calophyllum inophyllum methyl ester in a CI engine. Energy Conversion and Management, 146, pp. 8-19. doi: 10.1016/j.enconman.2017.05.021.
[34]    Ganesh, D. and Gowrishankar, G., 2011, September. Effect of nano-fuel additive on emission reduction in a biodiesel fuelled CI engine. In 2011 International conference on electrical and control engineering (pp. 3453-3459). IEEE. 
[35]    Hosseini, S.H., Taghizadeh-Alisaraei, A., Ghobadian, B. and Abbaszadeh-Mayvan, A., 2017. Performance and emission characteristics of a CI engine fuelled with carbon nanotubes and diesel-biodiesel blends. Renewable energy, 111, pp.201-213. doi: 10.1016/j.renene.2017.04.013.
[36]    Hoseini, S.S., Najafi, G., Ghobadian, B., Ebadi, M.T., Mamat, R. and Yusaf, T.J.R.E., 2020. Performance and emission characteristics of a CI engine using graphene oxide (GO) nano-particles additives in biodiesel-diesel blends. Renewable Energy, 145, pp.458-465. doi: 10.1016/j.renene.2019.06.006.
[37]    Ghanbari, M., Najafi, G., Ghobadian, B., Yusaf, T., Carlucci, A.P. and Kiani, M.K.D., 2017. Performance and emission characteristics of a CI engine using nano particles additives in biodiesel-diesel blends and modeling with GP approach. Fuel, 202, pp. 699-716. doi: 10.1016/j.fuel.2017.04.117.
[38]    Gumus, S., Ozcan, H., Ozbey, M. and Topaloglu, B., 2016. Aluminum oxide and copper oxide nanodiesel fuel properties and usage in a compression ignition engine. Fuel, 163, pp. 80-87. doi: 10.1016/j.fuel.2015.09.048.
[39]    Mehta, R.N., Chakraborty, M. and Parikh, P.A., 2014. Nanofuels: Combustion, engine performance and emissions. Fuel, 120, pp. 91-97. doi: 10.1016/j.fuel.2013.12.008.
[40]    Kannan, G.R., Karvembu, R. and Anand, R.J.A.E., 2011. Effect of metal based additive on performance emission and combustion characteristics of diesel engine fuelled with biodiesel. Applied energy, 88(11), pp.3694-3703. doi: 10.1016/j.apenergy.2011.04.043.
[41]    Ağbulut, Ü., 2022. Understanding the role of nanoparticle size on energy, exergy, thermoeconomic, exergoeconomic, and sustainability analyses of an IC engine: A thermodynamic approach. Fuel Processing Technology, 225, p. 107060. doi: 10.1016/j.fuproc.2021.107060.
[42]    Ağbulut, Ü., Sarıdemir, S., Rajak, U., Polat, F., Afzal, A. and Verma, T.N., 2021. Effects of high-dosage copper oxide nanoparticles addition in diesel fuel on engine characteristics. Energy, 229, p.120611. doi: 10.1016/j.energy.2021.120611.
[43]    Ağbulut, Ü., Karagöz, M., Sarıdemir, S. and Öztürk, A., 2020. Impact of various metal-oxide based nanoparticles and biodiesel blends on the combustion, performance, emission, vibration and noise characteristics of a CI engine. Fuel, 270, p.117521. doi: 10.1016/j.fuel.2020.117521.
[44]    Roy, R.G., Ağbulut, Ü., Koshy, C.P., Alex, Y., Sailesh, K.S., Khan, S.A., Jilte, R., Linul, E. and Asif, M., 2024. Impact of synthesizing surfactant-modified catalytic ceria nanoparticles on the performance and environmental behaviors of coconut oil/diesel-fueled CI engine: An optimization attempt. Energy, 295, p.130825. doi: 10.1016/j.energy.2024.130825.
[45]    Karagoz, M., Uysal, C., Agbulut, U. and Saridemir, S., 2021. Exergetic and exergoeconomic analyses of a CI engine fueled with diesel-biodiesel blends containing various metal-oxide nanoparticles. Energy, 214, p.118830. doi: 10.1016/j.energy.2020.118830.
[46]    Siddartha, G.N.V., Ramakrishna, C.S., Kujur, P.K., Rao, Y.A., Dalela, N., Yadav, A.S. and Sharma, A., 2022. Effect of fuel additives on internal combustion engine performance and emissions. Materials Today: Proceedings, 63, pp.A9-A14. doi: 10.1016/j.matpr.2022.06.307.
[47]    Hoang, A.T., Le, M.X., Nižetić, S., Huang, Z., Ağbulut, Ü., Veza, I., Said, Z., Le, A.T., Tran, V.D. and Nguyen, X.P., 2022. Understanding behaviors of compression ignition engine running on metal nanoparticle additives-included fuels: a control comparison between biodiesel and diesel fuel. Fuel, 326, p.124981. doi: 10.1016/j.fuel.2022.124981.
[48]    Spikes, H., 2015. Friction modifier additives. Tribology Letters, 60, pp.1-26. doi: 10.1007/s11249-015-0589-z.
[49]    Youssef, A. and Ibrahim, A., 2024. An experimental evaluation for the performance of a single cylinder CI engine fueled by a Diesel-Biodiesel blend with alcohols and Zinc-Aluminate nanoparticles as additives. Materials Today: Proceedings. doi: 10.1016/j.matpr.2024.04.015.
[50]    Yuvarajan, D., Babu, M.D., BeemKumar, N. and Kishore, P.A., 2018. Experimental investigation on the influence of titanium dioxide nanofluid on emission pattern of biodiesel in a diesel engine. Atmospheric Pollution Research, 9(1), pp.47-52. 
[51]    Prabakaran, B. and Udhoji, A., 2016. Experimental investigation into effects of addition of zinc oxide on performance, combustion and emission characteristics of diesel-biodiesel-ethanol blends in CI engine. Alexandria Engineering Journal, 55(4), pp.3355-3362. doi: 10.1016/j.aej.2016.08.022.
[52]    Prabu, A., 2018. Nanoparticles as additive in biodiesel on the working characteristics of a DI diesel engine. Ain shams Engineering journal, 9(4), pp.2343-2349. doi: 10.1016/j.asej.2017.04.004.
[53]    Sajith, V., Sobhan, C.B. and Peterson, G.P., 2010. Experimental investigations on the effects of cerium oxide nanoparticle fuel additives on biodiesel. Advances in Mechanical Engineering, 2, p.581407. doi: 10.1155/2010/581407.
[54]    Chandrasekaran, V., Arthanarisamy, M., Nachiappan, P., Dhanakotti, S. and Moorthy, B., 2016. The role of nano additives for biodiesel and diesel blended transportation fuels. Transportation Research Part D: Transport and Environment, 46, pp.145-156. doi: 10.1016/j.trd.2016.03.015.
[55]    Jayanthi, P. and Rao, M.S., 2016. Effects of nanoparticles additives on performance and emissions characteristics of a DI diesel engine fuelled with biodiesel. International Journal of Advances in Engineering & Technology, 9(6), p.689. doi: 10.7323/ijaet/v9_iss6.
[56]    Annamalai, M., Dhinesh, B., Nanthagopal, K., SivaramaKrishnan, P., Lalvani, J.I.J., Parthasarathy, M. and Annamalai, K., 2016. An assessment on performance, combustion and emission behavior of a diesel engine powered by ceria nanoparticle blended emulsified biofuel. Energy conversion and management, 123, pp.372-380. doi: 10.1016/j.enconman.2016.06.062.
[57]    Devarajan, Y., Munuswamy, D.B. and Mahalingam, A., 2017. Performance, combustion and emission analysis on the effect of ferrofluid on neat biodiesel. Process Safety and Environmental Protection, 111, pp.283-291. doi: 10.1016/j.psep.2017.07.021.
[58]    Shaafi, T. and Velraj, R.J.R.E., 2015. Influence of alumina nanoparticles, ethanol and isopropanol blend as additive with diesel–soybean biodiesel blend fuel: Combustion, engine performance and emissions. Renewable Energy, 80, pp.655-663. doi: 10.1016/j.renene.2015.02.042.
[59]    Özgür, T., Özcanli, M. and Aydin, K., 2015. Investigation of nanoparticle additives to biodiesel for improvement of the performance and exhaust emissions in a compression ignition engine. International journal of green energy, 12(1), pp.51-56. doi: 10.1080/15435075.2014.889011.
[60]    Aalam, C.S., Saravanan, C.G. and Kannan, M., 2015. Experimental investigations on a CRDI system assisted diesel engine fuelled with aluminium oxide nanoparticles blended biodiesel. Alexandria engineering journal, 54(3), pp.351-358. doi: 10.1016/j.aej.2015.04.009.
[61]    Sadhik Basha, J. and Anand, R.B., 2013. The influence of nano additive blended biodiesel fuels on the working characteristics of a diesel engine. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 35, pp.257-264. doi: 10.1007/s40430-013-0023-0.
[62]    Gürü, M., Karakaya, U., Altıparmak, D. and Alıcılar, A., 2002. Improvement of diesel fuel properties by using additives. Energy conversion and Management, 43(8), pp.1021-1025. doi: 10.1016/S0196-8904(01)00094-2.
[63]    Vellaiyan, S. and Partheeban, C.A., 2020. Combined effect of water emulsion and ZnO nanoparticle on emissions pattern of soybean biodiesel fuelled diesel engine. Renewable Energy, 149, pp.1157-1166. doi: 10.1016/j.renene.2019.10.101.
[64]    Choi, Y., Lee, C., Hwang, Y., Park, M., Lee, J., Choi, C. and Jung, M., 2009. Tribological behavior of copper nanoparticles as additives in oil. Current Applied Physics, 9(2), pp. e124-e127. doi: 10.1016/j.cap.2008.12.050.
[65]    Mortier, R.M., Orszulik, S.T. and Fox, M.F., 2010. Chemistry and technology of lubricants. Vol. 107115. Springer. doi: 10.1007/978-1-4020-8662-5.
[66]    Barnes, A.M., Bartle, K.D. and Thibon, V.R., 2001. A review of zinc dialkyldithiophosphates (ZDDPS): characterisation and role in the lubricating oil. Tribology international, 34(6), pp.389-395. doi: 10.1016/S0301-679X(01)00028-7.
[67]    Rudnick, L.R., 2009. Lubricant additives: chemistry and applications. CRC press. doi: 10.1201/9781420059656.
[68]    Bakunin, V.N., Suslov, A.Y., Kuzmina, G.N., Parenago, O.P. and Topchiev, A.V., 2004. Synthesis and application of inorganic nanoparticles as lubricant components–a review. Journal of Nanoparticle Research, 6, pp.273-284. doi: 10.1023/B:NANO.0000034720.79452.e3.
[69]    Li, X., Cao, Z., Zhang, Z. and Dang, H., 2006. Surface-modification in situ of nano-SiO2 and its structure and tribological properties. Applied surface science, 252(22), pp.7856-7861. doi: 10.1016/j.apsusc.2005.09.068.
[70]    Battez, A.H., González, R., Viesca, J.L., Fernández, J.E., Fernández, J.D., Machado, A., Chou, R. and Riba, J., 2008. CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants. Wear, 265(3-4), pp.422-428. doi: 10.1016/j.wear.2007.11.013.
[71]    Cellard, A., Garnier, V., Fantozzi, G., Baret, G. and Fort, P., 2009. Wear resistance of chromium oxide nanostructured coatings. Ceramics International, 35(2), pp.913-916. doi: 10.1016/j.ceramint.2008.02.022.
[72]    Hwang, Y., Lee, C., Choi, Y., Cheong, S., Kim, D., Lee, K., Lee, J. and Kim, S.H., 2011. Effect of the size and morphology of particles dispersed in nano-oil on friction performance between rotating discs. Journal of Mechanical Science and Technology, 25, pp.2853-2857. doi: 10.1007/s12206-011-0724-1.
[73]    Ali, Z.A.A.A., Takhakh, A.M. and Al-Waily, M., 2022. A review of use of nanoparticle additives in lubricants to improve its tribological properties. Materials Today: Proceedings, 52, pp.1442-1450. doi: 10.1016/j.matpr.2021.11.193.
[74]    Waqas, M., Zahid, R., Bhutta, M.U., Khan, Z.A. and Saeed, A., 2021. A review of friction performance of lubricants with nano additives. Materials, 14(21), p.6310. doi: 10.3390/ma14216310 
[75]    Shahnazar, S., Bagheri, S. and Abd Hamid, S.B., 2016. Enhancing lubricant properties by nanoparticle additives. International journal of hydrogen energy, 41(4), pp.3153-3170. doi: 10.1016/j.ijhydene.2015.12.040.
[76]    Srivyas, P.D. and Charoo, M.S., 2018. A Review on Tribological Characterization of Lubricants with Nano Additives for Automotive Applications. Tribology in Industry, 40(4). doi: 10.24874/ti.2018.40.04.08.
[77]    Wu, Y.Y., Tsui, W.C. and Liu, T.C., 2007. Experimental analysis of tribological properties of lubricating oils with nanoparticle additives. Wear, 262(7-8), pp. 819-825. doi: 10.1016/j.wear.2006.08.021.
[78]    Mangam, V., Bhattacharya, S., Das, K. and Das, S., 2010. Friction and wear behavior of Cu–CeO2 nanocomposite coatings synthesized by pulsed electrodeposition. Surface and Coatings Technology, 205(3), pp.801-805. doi: 10.1016/j.surfcoat.2010.07.119.
[79]    Jiao, D., Zheng, S., Wang, Y., Guan, R. and Cao, B., 2011. The tribology properties of alumina/silica composite nanoparticles as lubricant additives. Applied Surface Science, 257(13), pp.5720-5725. doi: 10.1016/j.apsusc.2011.01.084.
[80]    Battez, A.H., Viesca, J.L., González, R., Blanco, D., Asedegbega, E. and Osorio, A., 2010. Friction reduction properties of a CuO nanolubricant used as lubricant for a NiCrBSi coating. Wear, 268(1-2), pp.325-328. doi: 10.1016/j.wear.2009.08.018.
[81]    Song, X., Zheng, S., Zhang, J., Li, W., Chen, Q. and Cao, B., 2012. Synthesis of monodispersed ZnAl2O4 nanoparticles and their tribology properties as lubricant additives. Materials Research Bulletin, 47(12), pp.4305-4310. doi: 10.1016/j.materresbull.2012.09.013.
[82]    Shi, G., Zhang, M.Q., Rong, M.Z., Wetzel, B. and Friedrich, K., 2004. Sliding wear behavior of epoxy containing nano-Al2O3 particles with different pretreatments. Wear, 256(11-12), pp.1072-1081. doi: 10.1016/S0043-1648(03)00533-7.
[83]    Kirloskar Oil Engines Limited. 2024, [05-05-2024], Available from: https://www.kirloskaroilengines.com/.
[84]    Castrol GTX Diesel 15W-40. October 2023  [05-05-2024]; Available from: https://msdspds.castrol.com/msdspds/msdspds.nsf/CastrolResults?OpenForm&c=India%20(IN)&l=English%20(GB)&p=GTX%20DIESEL%2015W-40&n=&b=All&t=PDS&autosearch=No&autoload=No&sitelang=EN&output=Full&spu=Lubricants&unrestrictedmb=No&cols=0&_ga=2.262209164.1659088950.1714848024-1839148607.1714848024.
[85]    BANDELIN electronic GmbH & Co. KG Germany. [cited 2024 17th May]; Available from: https://bandelin.com/en/shop/sonorex-digitec-ultrasonic-bathrooms/sonorex-digitec-dt-514-h/.
[86]    ASTM, D 446 : Standard Speci®cations and Operating Instructions for Glass Capillary Kinematic Viscometers, 1999. ASTM, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959, United States.