[1] Aweid, R.S., Ahmed, O.K. and Algburi, S., 2024, March. Recent developments of floating photovoltaic power plants: A review. In AIP Conference Proceedings (Vol. 2885, No. 1). AIP Publishing.
[2] Yousuf, H., Khokhar, M.Q., Zahid, M.A., Kim, J., Kim, Y., Cho, E.C., Cho, Y.H. and Yi, J., 2020. A review on floating photovoltaic technology (FPVT). Current Photovoltaic Research, 8(3), pp.67-78.
[3] Rosa-Clot, M., Tina, G.M. and Nizetic, S., 2017. Floating photovoltaic plants and wastewater basins: an Australian project. Energy Procedia, 134, pp.664-674.
[4] Widayat, A.A., Ma’arif, S., Syahindra, K.D., Fauzi, A.F. and Setiawan, E.A., 2020, October. Comparison and optimization of floating bifacial and monofacial solar PV system in a tropical region. In 2020 9th international conference on power science and engineering (ICPSE) (pp. 66-70). IEEE.
[5] Abd-Elhamid, H.F., Ahmed, A., Zeleňáková, M., Vranayová, Z. and Fathy, I., 2021. Reservoir management by reducing evaporation using floating photovoltaic system: A case study of Lake Nasser, Egypt. Water, 13(6), p.769.
[6] Haas, J., Khalighi, J., De La Fuente, A., Gerbersdorf, S.U., Nowak, W. and Chen, P.J., 2020. Floating photovoltaic plants: Ecological impacts versus hydropower operation flexibility. Energy Conversion and Management, 206, p.112414.
[7] Semeskandeh, S., Hojjat, M. and Hosseini Abardeh, M., 2022. Techno–economic–environmental comparison of floating photovoltaic plant with conventional solar photovoltaic plant in northern Iran. Clean Energy, 6(2), pp.353-361.
[8] Pouran, H.M., Lopes, M.P.C., Nogueira, T., Branco, D.A.C. and Sheng, Y., 2022. Environmental and technical impacts of floating photovoltaic plants as an emerging clean energy technology. IScience, 25(11).
[9] Moraes, C.A., Valadão, G.F., Renato, N.S., Botelho, D.F., de Oliveira, A.C., Aleman, C.C. and Cunha, F.F., 2022. Floating photovoltaic plants as an electricity supply option in the Tocantins-Araguaia basin. Renewable Energy, 193, pp.264-277.
[10] Piancó, F., Moraes, L., dos Prazeres, I., Lima, A.G.G., Bessa, J.G., Micheli, L., Fernández, E. and Almonacid, F., 2022. Hydroelectric operation for hybridization with a floating photovoltaic plant: A case of study. Renewable Energy, 201, pp.85-95.
[11] Ghigo, A., Faraggiana, E., Sirigu, M., Mattiazzo, G. and Bracco, G., 2022. Design and analysis of a floating photovoltaic system for offshore installation: The case study of Lampedusa. Energies, 15(23), p.8804.
[12] Islam, M.I., Maruf, M.H., Al Mansur, A., Ashique, R.H., ul Haq, M.A., Shihavuddin, A.S.M. and Jadin, M.S., 2023. Feasibility analysis of floating photovoltaic power plant in Bangladesh: A case study in Hatirjheel Lake, Dhaka. Sustainable energy technologies and assessments, 55, p.102994.
[13] Ateş, A.M., 2022. Unlocking the floating photovoltaic potential of Türkiye's hydroelectric power plants. Renewable Energy, 199, pp.1495-1509.
[14] Temiz, M. and Dincer, I., 2022. Design and analysis of a floating photovoltaic based energy system with underground energy storage options for remote communities. Journal of Energy Storage, 55, p.105733.
[15] Peng, L., Liu, B., Zheng, S., Chen, X., Zhong, Q. and Chai, X., 2023. A new dynamic 2D fusion model and output characteristic analysis of floating photovoltaic modules considering motion and environmental factors. Energy Conversion and Management, 294, p.117588.
[16] Mumtaz, A., Abbas Kazmi, S.A., Altamimi, A., Khan, Z.A. and Alyami, S., 2024. Multi-dimensional potential assessment of grid-connected mega-scale floating PV power plants across heterogeneous climatic zones. Frontiers in Energy Research, 12, p.1404777.
[17] Chirwa, D., Goyal, R. and Mulenga, E., 2023. Floating solar photovoltaic (FSPV) potential in Zambia: Case studies on six hydropower power plant reservoirs. Renewable Energy Focus, 44, pp.344-356.
[18] Alsunousi, M. and Kayabasi, E., 2024. Techno-economic assessment of a floating photovoltaic power plant assisted methanol production by hydrogenation of CO2 captured from Zawiya oil refinery. International Journal of Hydrogen Energy, 57, pp.589-600.
[19] Moravej, M., Noghrehabadi, A., Esmaeilinasab, A.L.I. and Khajehpour, E., 2020. The effect of SiO2 nanoparticle on the performance of photovoltaic thermal system: Experimental and Theoretical approach. Journal of Heat and Mass Transfer Research, 7(1), pp.11-24.
[20] Balal, A., Sheikhzadeh, G.A. and Fattahi, A., 2024. Experimental evaluation of the hybrid-bifacial cooling of a PV panel in arid weather using channel heat exchanger and impingement flow nozzles. Journal of Heat and Mass Transfer Research, 11(2), pp.195-210.
[21] Sardoii, E.R., Rostami, N., Sigaroudi, S.K. and Taheri, S., 2012. Calibration of loss estimation methods in HEC-HMS for simulation of surface runoff (Case Study: Amirkabir Dam Watershed, Iran). Adv. Environ. Biol, 6(1), pp.343-348.
[22] Losgedaragh, S.Z. and Rahimzadegan, M., 2018. Evaluation of SEBS, SEBAL, and METRIC models in estimation of the evaporation from the freshwater lakes (Case study: Amirkabir dam, Iran). Journal of hydrology, 561, pp.523-531.
[23] Kalogirou, S.A., 2023. Solar energy engineering: processes and systems. Elsevier.
[24] Gow, J.A. and Manning, C.D., 1999. Development of a photovoltaic array model for use in power-electronics simulation studies. IEE Proceedings-Electric Power Applications, 146(2), pp.193-200.
[25] Badi, N., Khasim, S., Al-Ghamdi, S.A., Alatawi, A.S. and Ignatiev, A., 2021. Accurate modeling and simulation of solar photovoltaic panels with simulink-MATLAB. Journal of Computational Electronics, 20, pp.974-983.
[26] Anani, N. and Ibrahim, H., 2020. Adjusting the single-diode model parameters of a photovoltaic module with irradiance and temperature. Energies, 13(12), p.3226.
[27] Suh, J., Jang, Y. and Choi, Y., 2019. Comparison of electric power output observed and estimated from floating photovoltaic systems: A case study on the hapcheon dam, Korea. Sustainability, 12(1), p.276.
[28] Triyana, K., Yasuda, T., Fujita, K. and Tsutsui, T., 2004. Effects of different materials used for internal floating electrode on the photovoltaic properties of tandem type organic solar cell. Japanese journal of applied physics, 43(4S), p.2352.
[29] Kumar, N.M., Subramaniam, U., Mathew, M., Ajitha, A. and Almakhles, D.J., 2020. Exergy analysis of thin-film solar PV module in ground-mount, floating and submerged installation methods. Case Studies in Thermal Engineering, 21, p.100686.
[30] Jariso, M., Khan, B., Tesfaye, D. and Singh, J., 2017, April. Modeling and designing of stand-alone photovoltaic system: CaseStudy: Addis Boder health center south west Ethiopia. In 2017 International conference of Electronics, Communication and Aerospace Technology (ICECA) (Vol. 1, pp. 168-173). IEEE.
[31] Taye, B.Z., Nebey, A.H. and Workineh, T.G., 2020. Design of floating solar PV system for typical household on Debre Mariam Island. Cogent Engineering, 7(1), p.1829275.
[32] Muslim, H.N., Solar tilt angle optimization of PV systems for different case studies. EAI Endorsed Transactions on Energy Web, 2019. 6(23): p. e7-e7.
[33] Liu, L., Sun, Q., Li, H., Yin, H., Ren, X. and Wennersten, R., 2019. Evaluating the benefits of integrating floating photovoltaic and pumped storage power system. Energy Conversion and Management, 194, pp.173-185.
[34] Norton, B., Eames, P.C. and Lo, S.N., 1998. Full-energy-chain analysis of greenhouse gas emissions for solar thermal electric power generation systems. Renewable energy, 15(1-4), pp.131-136.