Air-Side Heat Transfer Enhancement Using Vortex Generators on Heat Transfer Surfaces- A Comprehensive Review

Document Type : Review Article

Authors

1 Department of Mechanical Engineering , Bhagwant University Ajmer, Rajasthan, 305023, India

2 Department of Mechanical Engineering, BGS College of Engineering and Technology, Bengaluru, 560086, India

3 Department of Mechanical Engineering Sinhgad College of Engineering, Pune, 411041, India

4 Department of Robotics and Artificial Intelligence, Bangalore Institute of Technology, Bengaluru, 560004, India

5 University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India

6 Department of Civil Engineering, Dijlah University College, Baghdad, 00964, Iraq

7 Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Babylon, 51001, Iraq

8 Department of Buildings and Construction Techniques Engineering, College of Engineering, Al-Mustaqbal University, Hillah, Babylon, 51001, Iraq

Abstract

The main purpose of this article is to provide a critical analysis of published research on these heat transfer surfaces. Important experimental methods and numerical procedures are explained, and many types of vortex generators are described. The phenomenon of flow attributed to vortex generators mounted, connected, pierced, or placed inside surfaces that transmit heat was also examined. In addition, recommendations for applying vortex generator (VGs) technology to improve air-side heat transfer are provided, as well as information on the thermal performance of newly proposed VG heat transfer surfaces. The performance of air-side heating surfaces can often be significantly improved through the use of vortex generators. However, their effectiveness can be greatly affected by many factors, including fluid flow rate, pipe geometry (diameter, shape, pitch, in-line or staggered configuration), fin type, and geometry of the vortex generator (height, length, shape, angle of attack, etc.). Circular fin-tube heat exchangers generally perform worse in terms of thermal-hydraulic efficiency than flat-tube-fin and oval-tube-fin heat-exchanging devices, and more recently, suggested vortex generators. Most current heat exchanger optimization methods focus only on thermal-hydraulic performance.

Keywords

Main Subjects


  1. Joule, J., 1862. On the surface-condensation of steam. Journal of the Franklin Institute, 73(2), pp.113–114. https://doi.org/10.1016/0016-0032 (62) 90880-3.
  2. Chi-Chuan Wang, Jiin-Yuh Chang, Nie., 1999. Effects of Waffle Height on the Air-Side Performance of Wavy Fin-and-Tube Heat Exchangers. Heat Transfer Engineering, 20(3), pp. 45–56. https://doi.org/10.1080/014576399271411.
  3. Tian, L., He, Y., Chu, P., & Tao, W., 2009. Numerical Study of Flow and Heat Transfer Enhancement by Using Delta Winglets in a Triangular Wavy Fin-and-Tube Heat Exchanger. Journal of Heat Transfer, 131(9). https://doi.org/10.1115/1.3139106.
  4. Thulukkanam, K., 2013. Heat Exchanger Design Handbook, Second Edition. CRC Press.
  5. Fiebig, M., 1998. Vortices, Generators and Heat Transfer. Chemical Engineering Research and Design, 76(2), pp. 108–123. https://doi.org/10.1205/026387698524686.
  6. Wang, C. C., Lo, J., Lin, Y. T., & Liu, M. S., 2002. Flow visualization of wave-type vortex generators having inline fin-tube arrangement. International Journal of Heat and Mass Transfer, 45(9), pp. 1933–1944. https://doi.org/10.1016/s0017-9310(01)00289-7.
  7. Depaiwa, N., Chompookham, T., Promvonge, P., 2010. Thermal enhancement in a solar air heater channel using rectangular winglet vortex generators. In Proceedings of the IEEE 2010 Proceedings of the International Conference on Energy and Sustainable Development: Issues and Strategies (ESD), Chiang Mai, Thailand, pp. 1–7.
  8. Jacobi, A., & Shah, R., 1995. Heat transfer surface enhancement through the use of longitudinal vortices: A review of recent progress. Experimental Thermal and Fluid Science, 11(3), pp. 295–309. https://doi.org/10.1016/0894-1777(95)00066-u.
  9. Wang, C. C., Lo, J., Lin, Y. T., & Wei, C. S., 2002. Flow visualization of annular and delta winlet vortex generators in fin-and-tube heat exchanger application. International Journal of Heat and Mass Transfer, 45(18), pp. 3803–3815. https://doi.org/10.1016/s0017-9310(02)00085-6.
  10. Stehlík, P., Jegla, Z., & Kilkovský, B., 2014. Possibilities of intensifying heat transfer through finned surfaces in heat exchangers for high temperature applications. Applied Thermal Engineering, 70(2), pp. 1283–1287. https://doi.org/10.1016/j.applthermaleng.2014.05.052.
  11. Bergles, A. E., 2011. Recent developments in enhanced heat transfer. Heat and Mass Transfer, 47(8), pp. 1001–1008. https://doi.org/10.1007/s00231-011-0872-y.
  12. Ahmed, H., Mohammed, H., & Yusoff, M., 2012. An overview on heat transfer augmentation using vortex generators and nanofluids: Approaches and applications. Renewable and Sustainable Energy Reviews, 16(8), pp. 5951–5993. https://doi.org/10.1016/j.rser.2012.06.003.
  13. Fiebig, M., 1997. Vortices and Heat Transfer. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift Für Angewandte Mathematik Und Mechanik, 77(1), pp. 3–18. https://doi.org/10.1002/zamm.19970770103.
  14. Aris, M., Owen, I., & Sutcliffe, C., 2011. The development of active vortex generators from shape memory alloys for the convective cooling of heated surfaces. International Journal of Heat and Mass Transfer, 54(15–16), pp. 3566–3574. https://doi.org/10.1016/j.ijheatmasstransfer.2011.03.030.
  15. Lin, Z. M., Wang, L. B., & Zhang, Y. H., 2014. Numerical study on heat transfer enhancement of circular tube bank fin heat exchanger with interrupted annular groove fin. Applied Thermal Engineering, 73(2), pp. 1465–1476. https://doi.org/10.1016/j.applthermaleng.2014.05.073.
  16. Lin, Z. M., Wang, L. B., & Zhang, Y. H., 2014. Numerical study on heat transfer enhancement of circular tube bank fin heat exchanger with interrupted annular groove fin. Applied Thermal Engineering, 73(2), pp. 1465–1476. https://doi.org/10.1016/j.applthermaleng.2014.05.073.
  17. He, J., Liu, L., & Jacobi, A. M., 2010. Air-Side Heat-Transfer Enhancement by a New Winglet-Type Vortex Generator Array in a Plain-Fin Round-Tube Heat Exchanger. Journal of Heat Transfer, 132(7). https://doi.org/10.1115/1.4000988.
  18. Zhou, G., & Ye, Q., 2012. Experimental investigations of thermal and flow characteristics of curved trapezoidal winglet type vortex generators. Applied Thermal Engineering, 37, pp. 241–248. https://doi.org/10.1016/j.applthermaleng.2011.11.024.
  19. Zhou, G., & Feng, Z., 2014. Experimental investigations of heat transfer enhancement by plane and curved winglet type vortex generators with punched holes. International Journal of Thermal Sciences, 78, pp. 26–35. https://doi.org/10.1016/j.ijthermalsci.2013.11.010.
  20. Lotfi, B., Zeng, M., Sundén, B., & Wang, Q., 2014. 3D numerical investigation of flow and heat transfer characteristics in smooth wavy fin-and-elliptical tube heat exchangers using new type vortex generators. Energy, 73, pp. 233–257. https://doi.org/10.1016/j.energy.2014.06.016.
  21. Lotfi, B., Sundén, B., & Wang, Q., 2016. An investigation of the thermo-hydraulic performance of the smooth wavy fin-and-elliptical tube heat exchangers utilizing new type vortex generators. Applied Energy, 162, pp. 1282–1302. https://doi.org/10.1016/j.apenergy.2015.07.065.
  22. Wu, X., Zhang, W., Gou, Q., Luo, Z., & Lu, Y., 2014. Numerical simulation of heat transfer and fluid flow characteristics of composite fin. International Journal of Heat and Mass Transfer, 75, pp. 414–424. https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.087.
  23. Garimella, S., & Eibeck, P., 1991. Enhancement of single phase convective heat transfer from protruding elements using vortex generators. International Journal of Heat and Mass Transfer, 34(9), pp. 2431–2433. https://doi.org/10.1016/0017-9310(91)90068-p.
  24. Fiebig, M., Kallweit, P., Mitra, N., & Tiggelbeck, S., 1991. Heat transfer enhancement and drag by longitudinal vortex generators in channel flow. Experimental Thermal and Fluid Science, 4(1), pp. 103–114. https://doi.org/10.1016/0894-1777(91)90024-l.
  25. Tiggelbeck, S., Mitra, N., & Fiebig, M., 1992. Flow structure and heat transfer in a channel with multiple longitudinal vortex generators. Experimental Thermal and Fluid Science, 5(4), pp. 425–436. https://doi.org/10.1016/0894-1777(92)90029-5.
  26. Tiggelbeck, S., Mitra, N., & Fiebig, M., 1993. Experimental investigations of heat transfer enhancement and flow losses in a channel with double rows of longitudinal vortex generators. International Journal of Heat and Mass Transfer, 36(9), pp.2327–2337. https://doi.org/10.1016/s0017-9310(05)80117-6.
  27. Fiebig, M., Valencia, A., & Mitra, N., 1993. Wing-type vortex generators for fin-and-tube heat exchangers. Experimental Thermal and Fluid Science, 7(4), pp. 287–295. https://doi.org/10.1016/0894-1777(93)90052-k.
  28. Tiggelbeck, S., Mitra, N. K., & Fiebig, M., 1994. Comparison of Wing-Type Vortex Generators for Heat Transfer Enhancement in Channel Flows. Journal of Heat Transfer, 116(4), pp. 880–885. https://doi.org/10.1115/1.2911462.
  29. Fiebig, M., Valencia, A., & Mitra, N., 1994. Local heat transfer and flow losses in fin-and-tube heat exchangers with vortex generators: A comparison of round and flat tubes. Experimental Thermal and Fluid Science, 8(1), pp. 35–45. https://doi.org/10.1016/0894-1777(94)90071-x.
  30. Gentry, M., & Jacobi, A., 1997. Heat transfer enhancement by delta-wing vortex generators on a flat plate: Vortex interactions with the boundary layer. Experimental Thermal and Fluid Science, 14(3), pp. 231–242. https://doi.org/10.1016/s0894-1777(96)00067-2.
  31. Kotcio glu, I.; Ayhan, T.; Olgun, H.; Ayhan, B., 1998. Heat transfer and flow structure in a rectangular channel with wing-type vortex generator. Turk. J. Eng. Environ. Sci., 22, pp. 185–196.
  32. Torii, K., Kwak, K., & Nishino, K., 2002. Heat transfer enhancement accompanying pressure-loss reduction with winglet-type vortex generators for fin-tube heat exchangers. International Journal of Heat and Mass Transfer, 45(18), pp. 3795–3801. https://doi.org/10.1016/s0017-9310(02)00080-7.
  33. Kwak, K., Torii, K., & Nishino, K., 2003. Heat transfer and pressure loss penalty for the number of tube rows of staggered finned-tube bundles with a single transverse row of winglets. International Journal of Heat and Mass Transfer, 46(1), pp. 175–180. https://doi.org/10.1016/s0017-9310(02)00235-1.
  34. Kwak, K., Torii, K., & Nishino, K., 2005. Simultaneous heat transfer enhancement and pressure loss reduction for finned-tube bundles with the first or two transverse rows of built-in winglets. Experimental Thermal and Fluid Science, 29(5), pp. 625–632. https://doi.org/10.1016/j.expthermflusci.2004.08.005.
  35. Gentry, M. C., & Jacobi, A. M., 2002. Heat Transfer Enhancement by Delta-Wing-Generated Tip Vortices in Flat-Plate and Developing Channel Flows. Journal of Heat Transfer, 124(6), pp. 1158–1168. https://doi.org/10.1115/1.1513578.
  36. Yoo, S. Y., Park, D. S., Chung, M. H., & Lee, S. Y., 2002. Heat transfer enhancement for fin-tube heat exchanger using vortex generators. KSME International Journal, 16(1), pp. 109–115. https://doi.org/10.1007/bf03185161.
  37. Yuan, Z. X., Tao, W. Q., & Yan, X. T., 2003. Experimental Study on Heat Transfer in Ducts with Winglet Disturbances. Heat Transfer Engineering, 24(2), pp. 76–84. https://doi.org/10.1080/01457630304086.
  38. Chen, T., & Shu, H., 2004. Flow structures and heat transfer characteristics in fan flows with and without delta-wing vortex generators. Experimental Thermal and Fluid Science, 28(4), pp. 273–282. https://doi.org/10.1016/s0894-1777 (03)00107-9.
  39. Leu, J. S., Wu, Y. H., & Jang, J. Y., 2004. Heat transfer and fluid flow analysis in plate-fin and tube heat exchangers with a pair of block shape vortex generators. International Journal of Heat and Mass Transfer, 47(19–20), pp. 4327–4338. https://doi.org/10.1016/j.ijheatmasstransfer.2004.04.031.
  40. O’Brien, J. E., Sohal, M. S., & Wallstedt, P. C., 2004. Local Heat Transfer and Pressure Drop for Finned-Tube Heat Exchangers Using Oval Tubes and Vortex Generators. Journal of Heat Transfer, 126(5), pp. 826–835. https://doi.org/10.1115/1.1795239.
  41. Sommers, A., & Jacobi, A., 2005. Air-side heat transfer enhancement of a refrigerator evaporator using vortex generation. International Journal of Refrigeration, 28(7), pp. 1006–1017. https://doi.org/10.1016/j.ijrefrig.2005.04.003.
  42. Pesteei, S., Subbarao, P., & Agarwal, R., 2005. Experimental study of the effect of winglet location on heat transfer enhancement and pressure drop in fin-tube heat exchangers. Applied Thermal Engineering, 25(11–12), pp. 1684–1696. https://doi.org/10.1016/j.applthermaleng.2004.10.013.
  43. Shi, B., Wang, L., Gen, F., & Zhang, Y., 2006. The optimal fin spacing for three-row flat tube bank fin mounted with vortex generators. Heat and Mass Transfer, 43(1), pp. 91–101. https://doi.org/10.1007/s00231-006-0093-y.
  44. Allison, C., & Dally, B., 2007. Effect of a delta-winglet vortex pair on the performance of a tube–fin heat exchanger. International Journal of Heat and Mass Transfer, 50(25–26), pp. 5065–5072. https://doi.org/10.1016/j.ijheatmasstransfer.2007.08.003.
  45. Wang, Q., Chen, Q., Wang, L., Zeng, M., Huang, Y., & Xiao, Z., 2007. Experimental study of heat transfer enhancement in narrow rectangular channel with longitudinal vortex generators. Nuclear Engineering and Design, 237(7), pp. 686–693. https://doi.org/10.1016/j.nucengdes.2006.09.003.
  46. Joardar, A., & Jacobi. A., 2008. Heat transfer enhancement by winglet-type vortex generator arrays in compact plain-fin-and-tube heat exchangers. International Journal of Refrigeration, 31(1), pp. 87–97. https://doi.org/10.1016/j.ijrefrig.2007.04.011.
  47. Tang L. H., G. N. & Wang, Q. W., 2009. Fin Pattern Effects on Air-Side Heat Transfer and Friction Characteristics of Fin-and-Tube Heat Exchangers with Large Number of Large-Diameter Tube Rows. Heat Transfer Engineering, 30(3), pp. 171–180.
  48. Tang, L., Zeng, M., & Wang, Q., 2009. Experimental and numerical investigation on air-side performance of fin-and-tube heat exchangers with various fin patterns. Experimental Thermal and Fluid Science, 33(5), pp. 818–827. https://doi.org/10.1016/j.expthermflusci.2009.02.008.
  49. Hernon, D.; Patten, N., 2009. Hotwire Measurements Downstream of a Delta Winglet Pair at Two Angles of Attack. In Proceedings of the ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences, San Francisco, CA, USA, pp. 777–784.
  50. Yang, K. S., Li, S. L., Chen, I. Y., Chien, K. H., Hu, R., & Wang, C. C.,2010. An experimental investigation of air cooling thermal module using various enhancements at low Reynolds number region. International Journal of Heat and Mass Transfer, 53(25–26), pp. 5675–5681. https://doi.org/10.1016/j.ijheatmasstransfer.2010.08.015.
  51. Promvonge, P., Chompookham, T., Kwankaomeng, S., & Thianpong, C., 2010. Enhanced heat transfer in a triangular ribbed channel with longitudinal vortex generators. Energy Conversion and Management, 51(6), pp. 1242–1249. https://doi.org/10.1016/j.enconman.2009.12.035.
  52. Chompookham, T., Thianpong, C., Kwankaomeng, S., & Promvonge, P., 2010. Heat transfer augmentation in a wedge-ribbed channel using winglet vortex generators. International Communications in Heat and Mass Transfer, 37(2), pp. 163–169. https://doi.org/10.1016/j.icheatmasstransfer.2009.09.012.
  53. Min, C., Qi, C., Kong, X., & Dong, J., 2010. Experimental study of rectangular channel with modified rectangular longitudinal vortex generators. International Journal of Heat and Mass Transfer, 53(15–16), pp. 3023–3029. https://doi.org/10.1016/j.ijheatmasstransfer.2010.03.026.
  54. Aris, M., McGlen, R., Owen, I., & Sutcliffe, C., 2011. An experimental investigation into the deployment of 3-D, finned wing and shape memory alloy vortex generators in a forced air convection heat pipe fin stack. Applied Thermal Engineering, 31(14–15), pp. 2230–2240. https://doi.org/10.1016/j.applthermaleng.2011.03.015.
  55. Wu, J., & Tao, W., 2012. Effect of longitudinal vortex generator on heat transfer in rectangular channels. Applied Thermal Engineering, 37, pp. 67–72. https://doi.org/10.1016/j.applthermaleng.2012.01.002.
  56. Wu, J., Zhang, H., Yan, C., & Wang, Y., 2012. Experimental study on the performance of a novel fin-tube air heat exchanger with punched longitudinal vortex generator. Energy Conversion and Management, 57, pp. 42–48. https://doi.org/10.1016/j.enconman.2011.12.009.
  57. Wang, C. C., Chen, K. Y., Liaw, J. S., & Tseng, C. Y., 2015. An experimental study of the air-side performance of fin-and-tube heat exchangers having plain, louver, and semi-dimple vortex generator configuration. International Journal of Heat and Mass Transfer, 80, pp. 281–287. https://doi.org/10.1016/j.ijheatmasstransfer.2014.09.030.
  58. Abdelatief, M. A., Sayed Ahmed, S. A. E., & Mesalhy, O. M., 2017. Experimental and numerical study on thermal-hydraulic performance of wing-shaped-tubes-bundle equipped with winglet vortex generators. Heat and Mass Transfer, 54(3), pp. 727–744. https://doi.org/10.1007/s00231-017-2164-7.
  59. Wu, X., Lin, Z. M., Liu, S., Su, M., Wang, L. C., & Wang, L. B., 2017. Experimental study on the effects of fin pitches and tube diameters on the heat transfer and fluid flow characteristics of a fin punched with curved delta-winglet vortex generators. Applied Thermal Engineering, 119, pp. 560–572. https://doi.org/10.1016/j.applthermaleng.2017.03.072.
  60. Kanaris, A. G., Mouza, A. A., & Paras, S. V., 2006. Flow and Heat Transfer Prediction in a Corrugated Plate Heat Exchanger using a CFD Code. Chemical Engineering & Technology, 29(8), pp. 923–930. https://doi.org/10.1002/ceat.200600093.
  61. Aslam Bhutta, M. M., Hayat, N., Bashir, M. H., Khan, A. R., Ahmad, K. N., & Khan, S., 2012. CFD applications in various heat exchangers design: A review. Applied Thermal Engineering, 32, pp. 1–12. https://doi.org/10.1016/j.applthermaleng.2011.09.001.
  62. Fiebig, M., Brockmeier, U., Mitra, N. K., & Gü termann, T., 1989. STRUCTURE OF VELOCITY AND TEMPERATURE FIELDS IN LAMINAR CHANNEL FLOWS WITH LONGITUDINAL VORTEX GENERATORS. Numerical Heat Transfer, Part A: Applications, 15(3), pp. 281–302. https://doi.org/10.1080/10407788908944689.
  63. Biswas, G., Mitra, N. K., & Fiebig, M., 1989. Computation of laminar mixed convection flow in a channel with wing type built-in obstacles. Journal of Thermophysics and Heat Transfer, 3(4), pp. 447–453. https://doi.org/10.2514/3.28769.
  64. Biswas, G., & Chattopadhyay, H., 1992. Heat transfer in a channel with built-in wing-type vortex generators. International Journal of Heat and Mass Transfer, 35(4), pp. 803–814. https://doi.org/10.1016/0017-9310(92)90248-q.
  65. Zhu, J. X., Fiebig, M., & Mitra, N. K., 1993. Comparison of Numerical and Experimental Results for a Turbulent Flow Field With a Longitudinal Vortex Pair. Journal of Fluids Engineering, 115(2), pp. 270–274. https://doi.org/10.1115/1.2910135.
  66. Zhu, J., Mitra, N., & Fiebig, M., 1993. Effects of longitudinal vortex generators on heat transfer and flow loss in turbulent channel flows. International Journal of Heat and Mass Transfer, 36(9), pp. 2339–2347. https://doi.org/10.1016/s0017-9310(05)80118-8.
  67. Biswas, G., Mitra, N., & Fiebig, M., 1994. Heat transfer enhancement in fin-tube heat exchangers by winglet type vortex generators. International Journal of Heat and Mass Transfer, 37(2), pp. 283–291. https://doi.org/10.1016/0017-9310(94)90099-x.
  68. Biswas, G., Deb, P., & Biswas, S., 1994. Generation of Longitudinal Streamwise Vortices—A Device for Improving Heat Exchanger Design. Journal of Heat Transfer, 116(3), pp. 588–597. https://doi.org/10.1115/1.2910910.
  69. Deb, P., Biswas, G., & Mitra, N., 1995. Heat transfer and flow structure in laminar and turbulent flows in a rectangular channel with longitudinal vortices. International Journal of Heat and Mass Transfer, 38(13), pp. 2427–2444. https://doi.org/10.1016/0017-9310(94)00357-2.
  70. Biswas, G., Torii, K., Fujii, D., & Nishino, K., 1996. Numerical and experimental determination of flow structure and heat transfer effects of longitudinal vortices in a channel flow. International Journal of Heat and Mass Transfer, 39(16), pp. 3441–3451. https://doi.org/10.1016/0017-9310(95)00398-3.
  71. Chen, Y., Fiebig, M., & Mitra, N., 2000. Heat transfer enhancement of finned oval tubes with staggered punched longitudinal vortex generators. International Journal of Heat and Mass Transfer, 43(3), pp. 417–435. https://doi.org/10.1016/s0017-9310(99)00157-x.
  72. Vasudevan, V. Eswaran, G. Biswas., 2000. WINGLET-TYPE VORTEX GENERATORS FOR PLATE-FIN HEAT EXCHANGERS USING TRIANGULAR FINS. Numerical Heat Transfer, Part A: Applications, 38(5), pp. 533–555. https://doi.org/10.1080/104077800750020423.
  73. Sohankar, A., & Davidson, L., 2001. EFFECT OF INCLINED VORTEX GENERATORS ON HEAT TRANSFER ENHANCEMENT IN A THREE-DIMENSIONAL CHANNEL. Numerical Heat Transfer: Applications, 39(5), pp. 433–448. https://doi.org/10.1080/104077801750111520.
  74. Tiwari, S., Maurya, D., Biswas, G., & Eswaran, V., 2003. Heat transfer enhancement in cross-flow heat exchangers using oval tubes and multiple delta winglets. International Journal of Heat and Mass Transfer, 46(15), pp. 2841–2856. https://doi.org/10.1016/s0017-9310(03)00047-4.
  75. Prabhakar, V., Biswas, G., & Eswaran, V., 2003. NUMERICAL PREDICTION OF HEAT TRANSFER IN A CHANNEL WITH A BUILT-IN OVAL TUBE AND VARIOUS ARRANGEMENTS OF THE VORTEX GENERATORS. Numerical Heat Transfer, Part A: Applications, 44(3), pp. 315–333. https://doi.org/10.1080/716100508.
  76. Bansode, V.H., Verma, M., 2024. Experimental and CFD Analysis of Heat Transfer Enhancement in Channel. In: Pawar, P.M., et al. Techno-Societal 2022. ICATSA 2022. Springer, Cham. https://doi.org/10.1007/978-3-031-34648-4_63.
  77. Aksay, S., 2023. Heat transfer analysis of pulsating nanofluid flow in a semicircular wavy channel with baffles. Sadhana, 48, pp. 57. https://doi.org/10.1007/s12046-023-02119-x.
  78. AKSAY, S., 2023. Numerical Analysis of Hydraulic and Thermal Performance of Al2O3-Water Nanofluid in a Zigzag Channel with Central Winglets. Gazi University Journal of Science, 36(1), pp. 383-397. https://doi.org/10.35378/gujs.1012201.
  79. AKSAY, S., & AKDAG, U., 2022. Effect of baffle angles on flow and heat transfer in a circular duct with nanofluids. International Advanced Researches and Engineering Journal, 6(3), pp. 176-185. https://doi.org/10.35860/iarej.1136354.
  80. Wang, Y., Nasajpour-Esfahani, N., Alizadeh, A., Smaisim, G. F., Abed, A. M., Hadrawi, S. K., Hekmatifar, M. Numerical simulation of the melting of solid paraffin in a solar water heater and the effect of the number of fins and the height of the fins. Elsevier.
  81. Ibrahim, A. Q., & Alturaihi, R. S., 2023. Numerical Investigation for Single-Phase and Two-Phase Flow in Duct Banks with Multi Types of Vortex Generators. International Journal of Technology, 14(3).
  82. Narayanasamy, M.P., Smaisim, G.F., Abed, A.M., Joseph Leon, S.L., & Subramani, K., 2023. Experimental and Computational Analysis of Pin-Fin Profiles for Aerospace Applications. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 47, 1503-1513.
  83. Samadifar, D. Toghraie, 2018. Numerical simulation of heat transfer enhancement in a plate-fin heat exchanger using a new type of vortex generators, Applied Thermal Engineering, doi: https://doi.org/10.1016/j.applthermaleng.2018.01.062
  84. Moraveji, A., & Toghraie, D. 2017. Computational fluid dynamics simulation of heat transfer and fluid flow characteristics in a vortex tube by considering the various parameters. International Journal of Heat and Mass Transfer, 113, 432–443. doi:10.1016/j.ijheatmasstransfer.2017.05.095
  85. Li, F., Abed, A. M., Naghdi, O., Nasajpour-Esfahani, N., Hamedi, S., Al Mashhadani, Z.,Toghraie, D. 2022. The numerical investigation of the finned double-pipe phase change material heat storage system equipped with internal vortex generator. Journal of Energy Storage, 55(105413), 105413. doi:10.1016/j.est.2022.105413