CFD Simulation of Photovoltaic Thermal (PV/T) Cooling System with Various Channel Geometries

Document Type : Full Length Research Article

Authors

1 Mechanical Engineering Department of Udayana University, Street of Bukit Jimbaran, Badung, Bali 80361, Indonesia

2 Civil Engineering Department of Udayana University, Street of Bukit Jimbaran, Badung, Bali 80361, Indonesia

Abstract

Photovoltaic/thermal (PV/T) is a solution for solar energy conversion devices to increase their efficiency. One of the challenges of PV/T is maintaining the temperature at optimal working conditions. Various studies have been conducted to improve PV/T performance, one of which is through the design of thermal collectors on PV/T. In this study, Computational Fluid Dynamics (CFD) simulations were conducted using four different types of channels: circular, hexagonal, semi-circular, and square. The channels were made with the same tube cross-sectional area and mass flow rate of 0.0016 m2 and 0.0096 kg/s, respectively. The simulation results show that the circular channel numerically gives the lowest PV cell temperature, 317.95 K, with an electrical efficiency of 14.70% and a thermal efficiency of 44.18%. This is because the water velocity in the circular channel can be faster than the other channels.  The circular channel has a thinner boundary layer, so the velocity is maximized, and the heat transfer rate increases.

Keywords

Main Subjects


[1] Abdul-Ganiyu, S., Quansah, D.A., Ramde, E.W., Seidu, R., Adaramola, M.S., 2020. Investigation of solar photovoltaic-thermal (PVT) and solar photovoltaic (PV) performance: A case study in Ghana. Energies (Basel) 13
https://doi.org/10.3390/en13112701
[2] Diwania, S., Agrawal, S., Siddiqui, A.S. et al., 2020. Photovoltaic–thermal (PV/T) technology: a comprehensive review on applications and its advancement. Int J Energy Environ Eng 11, 33–54. https://doi.org/10.1007/s40095-019-00327-y
[3] Budiyanto, M. A., & Lubis, M. H., 2020. Physical reviews of solar radiation models for estimating global solar radiation in Indonesia. Energy Reports, 6, 1206-1211. https://doi.org/10.1016/j.egyr.2020.11.053
[4] Pavlovic, A., Fragassa, C., Bertoldi, M., Mikhnych, V., 2021. Thermal Behavior of Monocrystalline Silicon Solar Cells: A Numerical and Experimental Investigation on the Module Encapsulation Materials. Journal of Applied and Computational Mechanics 7, 1847–1855. https://doi.org/10.22055/jacm.2021.37852.3101
[5] Dwivedi, P., Sudhakar, K., Soni, A., Solomin, E., & Kirpichnikova, I., 2020. Advanced cooling techniques of PV modules: a state of art, Case Stud. Therm. Eng. 21 (2020), 100674. https://doi.org/10.1016/j.csite.2020.100674
[6] Noxpanco, M. G., Wilkins, J., & Riffat, S., 2020. A review of the recent development of photovoltaic/thermal (Pv/t) systems and their applications. Future Cities and Environment,  6, 9-9. https://doi.org/10.5334/fce.97
[7] Khanjari, Y., Pourfayaz, F., Kasaeian, A.B., 2016. Numerical investigation on using of nanofluid in a water-cooled photovoltaic thermal system. Energy Convers Manag 122, 263–278. https://doi.org/10.1016/j.enconman.2016.05.083
[8] Vajedi, H., Dehghan, M., Aminy, M., Pourrajabian, A. and Ilis, G.G., 2022. Experimental study on an air-based photovoltaic-thermal (PV-T) system with a converging thermal collector geometry: a comparative performance analysis. Sustainable Energy Technologies and Assessments, 52, p.102153. https://doi.org/10.1016/j.seta.2022.102153
[9] Yan, W. S., Tan, X. Y., Guan, L., Zhou, H. P., Yang, X. B., Xiang, P., & Zhong, Z. C., 2021. Solution of efficiency loss in thinned silicon PERC solar cells. Renewable Energy165, 118-124. https://doi.org/10.1016/j.renene.2020.10.134
[10] Cotfas, D.T., Cotfas, P.A., Machidon, O.M., 2018. Study of temperature coefficients for parameters of photovoltaic cells. International Journal of Photoenergy 2018. https://doi.org/10.1155/2018/5945602
[11] Abdullah, A.L., Misha, S., Tamaldin, N., Rosli, M.A.M. and Sachit, F.A., 2020. Theoretical study and indoor experimental validation of performance of the new photovoltaic thermal solar collector (PVT) based water system. Case Studies in Thermal Engineering, 18, p.100595. https://doi.org/10.1016/j.csite.2020.100595
[12] Metwally, H., Mahmoud, N. A., Aboelsoud, W., & Ezzat, M., 2022. A critical review of photovoltaic panels thermal management: criteria and methods. ASM2, 2.
[13] Pathak, S. K., Sharma, P. O., Goel, V., Bhattacharyya, S., Aybar, H. Ş., & Meyer, J. P., 2022. A detailed review on the performance of photovoltaic/thermal system using various cooling methods. Sustainable Energy Technologies and Assessments51, 101844. https://doi.org/10.1016/j.seta.2021.101844
[14] Pang, W., Cui, Y., Zhang, Q., Yu, H., Zhang, L., Yan, H., 2019. Experimental effect of high mass flow rate and volume cooling on performance of a water-type PV/T collector. Solar Energy, 188, pp.1360–1368. https://doi.org/10.1016/j.solener.2019.07.024
[15] Kazem, H.A., Al-Waeli, A.H.A., Chaichan, M.T., Al-Waeli, K.H., Al-Aasam, A.B., Sopian, K., 2020. Evaluation and comparison of different flow configurations PVT systems in Oman: A numerical and experimental investigation. Solar Energy, 208, pp.58–88. https://doi.org/10.1016/j.solener.2020.07.078
[16] Khalili, Z., Sheikholeslami, M., & Momayez, L., 2023. Hybrid nanofluid flow within cooling tube of photovoltaic-thermoelectric solar unit. Scientific Reports, 13(1), p.8202. https://doi.org/10.1038/s41598-023-35428-6
[17] Emmanuel, B., Yuan, Y., Gaudence, N. and Zhou, J., 2021. A review on the influence of the components on the performance of PVT modules. Solar Energy, 226, pp.365-388. https://doi.org/10.1016/j.solener.2021.08.042
[18] Sardouei, M.M., Mortezapour, H., Naeimi, K.J., 2018. Temperature distribution and efficiency assessment of different PVT water collector designs. Indian Academy of Sciences Sādhanā, 43, pp.1-13. https://doi.org/10.1007/s12046-018-0826-xS
[19] Hissouf, M., Feddaoui, M., Najim, M., Charef, A., 2020. Performance of a photovoltaic-thermal solar collector using two types of working fluids at different fluid channels geometry. Renew Energy 162, 1723–1734. https://doi.org/10.1016/j.renene.2020.09.097
[20] Baranwal, N.K. and Singhal, M.K., 2021. Modeling and simulation of a spiral type hybrid photovoltaic thermal (PV/T) water collector using ANSYS. In Advances in Clean Energy Technologies: Select Proceedings of ICET 2020 (pp. 127-139). Springer Singapore. https://doi.org/10.1007/978-981-16-0235-1_10
[21] Arifin, Z., Prasetyo, S.D., Prabowo, A.R., Tjahjana, D.D.D.P., Rachmanto, R.A., 2021. Effect of thermal collector configuration on the photovoltaic heat transfer performance with 3D CFD modeling. Open Engineering 11, 1076–1085. https://doi.org/10.1515/eng-2021-0107
[22] Tirupati Rao, V., & Raja Sekhar, Y., 2023. Hybrid photovoltaic/thermal (PVT) collector systems with different absorber configurations for thermal management–a review. Energy & Environment34(3), pp. 690-735. https://doi.org/10.1177/0958305X211065575
[23] Popovici, C.G., Hudişteanu, S.V., Mateescu, T.D., Cherecheş, N.C., 2016. Efficiency Improvement of Photovoltaic Panels by Using Air Cooled Heat Sinks, in: Energy Procedia. Elsevier Ltd, pp. 425–432. https://doi.org/10.1016/j.egypro.2015.12.223
[24] Zondag, H. A., De Vries, D. D., Van Helden, W. G. J., van Zolingen, R. C., & Van Steenhoven, A. A., 2002. The thermal and electrical yield of a PV-thermal collector. Solar energy72(2), 113-128. https://doi.org/10.1016/S0038-092X(01)00094-9
[25] ANSYS Inc, 2010. Ansys Meshing User’s Guide.
[26] Lin, J., Hong, Y., & Lu, J., 2022. New method for the determination of convective heat transfer coefficient in fully-developed laminar pipe flow. Acta Mechanica Sinica38(1), p.321430. https://doi.org/10.1007/s10409-021-09024-x
[27] Ewe, W.E., Fudholi, A., Sopian, K. and Asim, N., 2021. Modeling of bifacial photovoltaic-thermal (PVT) air heater with jet plate. Int. J. Heat Technol, 39(4), pp.1117-1122. https://doi.org/10.18280/ijht.390409