[1] Tat, M.E., 2011. Cetane number effect on the energetic and exergetic efficiency of a diesel engine fuelled with biodiesel. Fuel processing technology, 92(7), pp.1311-1321. doi: 10.1016/j.fuproc.2011.02.006.
[2] Grimaldi, C.N. and Millo, F., 2015. Internal combustion engine (ICE) fundamentals. In Handbook of clean energy systems (Vol. 2, pp. 907-938). John Wiley & Sons Limited. doi: 10.1002/9781118991978.hces077.
[3] Kavitha, K.R., Jayaprabakar, J. and Prabhu, A., 2022. Exergy and energy analyses on biodiesel–diesel-ethanol blends in a diesel engine. International Journal of Ambient Energy, 43(1), pp.778-782. doi: 10.1080/01430750.2019.1670261.
[4] Khoobbakht, G., Akram, A., Karimi, M. and Najafi, G., 2016. Exergy and energy analysis of combustion of blended levels of biodiesel, ethanol and diesel fuel in a DI diesel engine. Applied Thermal Engineering, 99, pp.720-729. doi: 10.1016/j.applthermaleng.2016.01.022.
[5] Şanli, B.G. and Uludamar, E., 2020. Energy and exergy analysis of a diesel engine fuelled with diesel and biodiesel fuels at various engine speeds. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 42(11), pp.1299-1313. Jun. 2020, doi: 10.1080/15567036.2019.1635229.
[6] Yesilyurt, M.K. and Arslan, M., 2019. Analysis of the fuel injection pressure effects on energy and exergy efficiencies of a diesel engine operating with biodiesel. Biofuels, 10(5), pp. 643–655. doi: 10.1080/17597269.2018.1489674.
[7] Murugapoopathi, S. and Vasudevan, D., 2019. Energy and exergy analysis on variable compression ratio multi-fuel engine. Journal of Thermal Analysis and Calorimetry, 136, pp.255-266. doi: 10.1007/s10973-018-7761-2.
[8] Panigrahi, N., Mohanty, M.K., Mishra, S.R. and Mohanty, R.C., 2018. Energy and exergy analysis of a diesel engine fuelled with diesel and simarouba biodiesel blends. Journal of the Institution of Engineers (India): Series C, 99, pp.9-17. doi: 10.1007/s40032-016-0335-9.
[9] Sarıkoç, S., Örs, İ. and Ünalan, S., 2020. An experimental study on energy-exergy analysis and sustainability index in a diesel engine with direct injection diesel-biodiesel-butanol fuel blends. Fuel, 268, p.117321. doi: 10.1016/j.fuel.2020.117321.
[10] Yesilyurt, M.K., 2020. The examination of a compression-ignition engine powered by peanut oil biodiesel and diesel fuel in terms of energetic and exergetic performance parameters. Fuel, 278, p.118319. doi: 10.1016/j.fuel.2020.118319.
[11] Karami, S. and Gharehghani, A., 2021. Effect of nano-particles concentrations on the energy and exergy efficiency improvement of indirect-injection diesel engine. Energy Reports, 7, pp.3273-3285. doi: 10.1016/j.egyr.2021.05.050.
[12] Karagoz, M., Uysal, C., Agbulut, U. and Saridemir, S., 2021. Exergetic and exergoeconomic analyses of a CI engine fueled with diesel-biodiesel blends containing various metal-oxide nanoparticles. Energy, 214, p.118830. doi: 10.1016/j.energy.2020.118830.
[13] Zeeshan, M., Vasudeva, M. and Sarma, A.K., 2016. Biodiesel production from Moringa oleifera oil and its characteristics as fuel in a diesel engine. In Proceedings of the First International Conference on Recent Advances in Bioenergy Research (pp. 149-157). Springer India. doi: 10.1007/978-81-322-2773-1_11.
[14] Niju, S., Balajii, M. and Anushya, C., 2019. A comprehensive review on biodiesel production using Moringa oleifera oil. International Journal of Green Energy, 16(9), pp.702-715. doi: 10.1080/15435075.2019.1619565.
[15] Kline, S.J., 1963. Describing uncertainties in single-sample experiments. Mechanical Engineering, 75, pp. 3-8.
[16] Moffat, R.J., 1988. Describing the uncertainties in experimental results. Experimental Thermal and Fluid Science, 1(1), pp.3-17. doi:10.1016/0894-1777(88)90043-X.
[17] Karthikeyan, A. and Jayaprabakar, J., 2019. Energy and exergy analysis of compression ignition engine fuelled with rice bran biodiesel blends. International Journal of Ambient Energy, 40(4), pp.381-387. doi: 10.1080/01430750.2017.1399459.
[18] Saravanan, A., Murugan, M., Reddy, M.S. and Parida, S., 2020. Performance and emission characteristics of variable compression ratio CI engine fueled with dual biodiesel blends of Rapeseed and Mahua. Fuel, 263, p.116751. doi: 10.1016/j.fuel.2019.116751.
[19] Muruganandam, M. and Kumar, P.M., 2020. Experimental analysis on internal combustion engine using MWCNT/water nanofluid as a coolant. Materials Today: Proceedings, 21, pp.248-252. doi: 10.1016/j.matpr.2019.05.411.
[20] Debnath, B.K., Sahoo, N. and Saha, U.K., 2013. Thermodynamic analysis of a variable compression ratio diesel engine running with palm oil methyl ester. Energy Conversion and Management, 65, pp.147-154. doi: 10.1016/j.enconman.2012.07.016.
[21] Rai, S., Arslan, S. and Jawad, B., 2018. Exhaust heat recovery system study in internal combustion engines (No. 2018-01-1374). SAE Technical Paper. doi: 10.4271/2018-01-1374.
[22] Jindal, S., Nandwana, B.P., Rathore, N.S. and Vashistha, V., 2010. Experimental investigation of the effect of compression ratio and injection pressure in a direct injection diesel engine running on Jatropha methyl ester. Applied thermal engineering, 30(5), pp.442-448. doi: 10.1016/j.applthermaleng.2009.10.004.
[23] Chaudhary, V. and Gakkhar, R.P., 2021. Exergy analysis of small DI diesel engine fueled with waste cooking oil biodiesel. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 43(2), pp.201-215.doi: 10.1080/15567036.2019.1624875.
[24] Karikalan, L., Chandrasekaran, M., Venugopal, S., Jacob, S. and Baskar, S., 2021. Investigations on diesel engine characteristics with Pongamia biodiesel at dissimilar compression ratios. International Journal of Ambient Energy, 42(9), pp.1005-1008. doi: 10.1080/01430750.2019.1583131.
[25] EL_Kassaby, M. and Nemit_allah, M.A., 2013. Studying the effect of compression ratio on an engine fueled with waste oil produced biodiesel/diesel fuel. Alexandria Engineering Journal, 52(1), pp.1-11. doi: 10.1016/j.aej.2012.11.007.
[26] Madheshiya, A.K. and Vedrtnam, A., 2018. Energy-exergy analysis of biodiesel fuels produced from waste cooking oil and mustard oil. Fuel, 214, pp.386-408. doi: 10.1016/j.fuel.2017.11.060.