Improving the Performance of Liquid-Based Battery Thermal Management Systems Using Flow Patterns and Contact Surface with the Battery

Document Type : Full Length Research Article

Author

Department of Flight and Engineering, Imam Ali University, Tehran, Iran

Abstract

The advancement and commercialization of electric vehicles due to their advantages have increased research in this field. Lithium-ion batteries are among the most important components of electric vehicles, and their performance is affected by temperature. In this study, fluid dynamics and heat transfer in a cooling system for battery cells were investigated using three-dimensional solid-fluid simulations. The thermophysical properties of the cooling fluid were considered variable with temperature and implemented using a user-defined function (UDF). Numerical simulation can effectively predict the thermal behavior of battery cells during discharge and match experimental data. This study examined the impact of different flow patterns and solid block contact surfaces on the maximum surface temperature and temperature distribution uniformity. The results show that the structure of incremental blocks can affect the temperature distribution of battery cells, such that in parallel flow, the maximum temperature of cells near the inlet increases by 0.65°C, and cells near the outlet decreases by 0.2°C. In contrast, in counter-flow, the maximum temperature of side cells is higher by 0.25°C. Additionally, the study shows the impact of increased contact surface on system weight, indicating a significant weight reduction of about 28.5% in solid blocks with increased contact surface. This research demonstrates the potential of using numerical simulations to improve the design of thermal management systems in battery cells.

Keywords

Main Subjects


[1]    Sarvar-Ardeh, S., Rashidi, S., Rafee, R., Karimi, N., 2023. A review on the applications of micro-/mini-channels for battery thermal management. Journal of Thermal Analysis and Calorimetry, 148, pp. 7959-7979. doi: https://doi.org/10.1007/s10973-023-12092-6. 
[2]    Hwang, F. S., Confrey, T., Reidy, C., Picovici, D., Callaghan, D., Culliton, D., Nolan, C., 2024. Review of battery thermal management systems in electric vehicles. Renewable and Sustainable Energy Reviews, 192, 114171. doi: https://doi.org/10.1016/j.rser.2023.114171. 
[3]    Rao, Z., Zhang, X., 2019. Investigation on thermal management performance of wedge‐shaped microchannels for rectangular Li‐ion batteries. Int. J. Energy Research 43, pp. 3876-3890. doi: https://doi.org/10.1002/er.4571. 
[4]    Pan, M., Zhong, X., Dong, G., Huang, G., 2019. Experimental study of the heat dissipation of battery with a manifold micro-channel heat sink. Applied Thermal Engineering, 163, 114330. doi: https://doi.org/10.1016/j.applthermaleng.2019.114330. 
[5]    Pan, M., Hu, M., 2020. Numerical Simulation of Manifold Microchannel Heat Sinks for Thermal Management in a Li‐Ion Battery. Chemical Engineering & Technology, 43, pp. 2501-2513. doi: https://doi.org/10.1002/ceat.202000316. 
[6]    Wei, L., Jia, L., An, Z., Dang, C., 2020. Experimental study on thermal management of cylindrical Li-ion battery with flexible microchannel plates. Journal of Thermal Science, 29, pp. 1001–1009. doi: https://doi.org/10.1007/s11630-020-1331-1. 
[7]    Xu, Z., Xu, J., Guo, Z., Wang, H., Sun, Z., Mei, X., 2020. Design and Optimization of a Novel Microchannel Battery Thermal Management System Based on Digital Twin. Energies, 15, 1421. doi: https://doi.org/10.3390/en15041421. 
[8]    Azizi, Z., Barzegarian, R., Behvandi, M., 2022. Design-expert aided thermohydraulic assessment of a nanofluid-cooled cylindrical microchannel heat sink: Possible application for thermal management of electric vehicle batteries. Sustainable Energy Technologies and Assessments, 50, 101876. doi: https://doi.org/10.1016/j.seta.2021.101876. 
[9]    Jahanbakhshi, A., Nadooshan, A.A., Bayareh, M., 2022. Cooling of a lithium-ion battery using microchannel heatsink with wavy microtubes in the presence of nanofluid. J. Energy Storage, 49, 104128. doi: https://doi.org/10.1016/j.est.2022.104128. 
[10]    Yang, W., Zhou, F., Zhou, H., Wang, Q., Kong, J., 2020. Thermal performance of cylindrical lithium-ion battery thermal management system integrated with mini-channel liquid cooling and air cooling. Applied Thermal Engineering, 175, 115331. doi: https://doi.org/10.1016/j.applthermaleng.2020.115331. 
[11]    Chen, X., Shen, J., Xu, X., Wang, X., Su, Y., Qian, J., Zhou, F., 2024. Performance of thermal management system for cylindrical battery containing bionic spiral fin wrapped with phase change material and embedded in liquid cooling plate. Renewable Energy, 223, 120087. doi: https://doi.org/10.1016/j.renene.2024.120087. 
[12]    Yang, W., Zhou, F., Liu, Y., Xu, S., Chen, X., 2021. Thermal performance of honeycomb-like battery thermal management system with bionic liquid mini-channel and phase change materials for cylindrical lithium-ion battery. Applied Thermal Engineering, 188, 116649. doi: https://doi.org/10.1016/j.applthermaleng.2021.116649. 
[13]    Xiong, X., Wang, Z., Fan, Y., Wang, H., 2023. Numerical analysis of cylindrical lithium-ion battery thermal management system based on bionic flow channel structure. Thermal Science and Engineering Progress, 42, 101879. doi: https://doi.org/10.1016/j.tsep.2023.101879.
[14]    Antara I., Sucipta M., Astawa K., Wirawan I., Sukrawa M., 2024. CFD Simulation of Photovoltaic Thermal (PV/T) Cooling System with Various Channel Geometries. Journal of Heat and Mass Transfer Research. doi: https://doi.org/10.22075/jhmtr.2024.33787.1551. 
[15]    Magar S.M., Gugliani G.K., Navthar R.R., 2024. Experimental Heat Transfer Analysis of Helical Coiled Tubes on the Basis of Variation in Curvature Ratio and Geometry. Journal of Heat and Mass Transfer Research, 11, 89-108. doi: https://doi.org/10.22075/jhmtr.2024.32179.1491. 
[16]    Li, L., Ling, L., Xie, Y., Zhou, W., Wang, T., Zhang, L., Bei, S., Zheng, K., Xu, Q., 2023. Comparative study of thermal management systems with different cooling structures for cylindrical battery modules: Side-cooling vs. terminal-cooling. Energy, 274, 127414. doi: https://doi.org/10.1016/j.energy.2023.127414. 
[17]    Xin, S., Wang, C., Xi, H., 2023, Thermal management scheme and optimization of cylindrical lithium-ion battery pack based on air cooling and liquid cooling. Applied Thermal Engineering, 224, 120100. doi: https://doi.org/10.1016/j.applthermaleng.2023.120100. 
[18]    Thakur, S.S., Akula, R., Kumar, L., 2024, An effective and lightweight battery thermal management system with incremental contact area: A numerical study. Applied Thermal Engineering, 242, 122555. doi: https://doi.org/10.1016/j.applthermaleng.2024.122555. 
[19]    Shan, S., Li, L., Xu, Q., Ling, L., Xie, Y., Wang, H., Zheng, K., Zhang, L., Bei, S., 2023. Numerical investigation of a compact and lightweight thermal management system with axially mounted cooling tubes for cylindrical lithium-ion battery module. Energy, 274, 127410. doi: https://doi.org/10.1016/j.energy.2023.127410. 
[20]    Yates, M., Akrami, M., Javadi, A.A., 2021, Analysing the performance of liquid cooling designs in cylindrical lithium-ion batteries. Journal of Energy Storage, 33, 100913. doi: https://doi.org/10.1016/j.est.2019.100913. 
[21]    Rao, Z., Qian, Z., Kuang, Y., Li, Y., 2017. Thermal performance of liquid cooling based thermal management system for cylindrical lithium-ion battery module with variable contact surface. Applied Thermal Engineering, 123, pp. 1514-1522. doi: https://doi.org/10.1016/j.applthermaleng.2017.06.059. 
[22]    White, F., 2005. Viscous Fluid Flow, (3rd edition), McGraw-Hill.
[23]    Huang, H., Wang, H., Gu, J., Wu, Y., 2019. High-dimensional model representation-based global sensitivity analysis and the design of a novel thermal management system for lithium-ion batteries. Energy Conversion and Management, 190, pp. 54-72. doi: https://doi.org/10.1016/j.enconman.2019.04.013. 
[24]    Sutheesh, P.M., Nichit, R.B., Rohinikumar, B., 2024. Numerical investigation of thermal management of lithium ion battery pack with nano-enhanced phase change material and heat pipe. Journal of Energy Storage, 77, 109972. doi: https://doi.org/10.1016/j.est.2023.109972 
[25]    Jiaqiang, E., Yue, M., Chen, J., Zhu, H., Deng, Y., Zhu, Y., Zhang, F., Wen, M., Zhang, B., Kang, S., 2018. Effects of the different air cooling strategies on cooling performance of a lithium-ion battery module with baffle. Applied Thermal Engineering, 144, pp. 231-241. doi: https://doi.org/10.1016/j.applthermaleng.2018.08.064. 
[26]    Mubashir, M., Xu, J., Guo, Z., Wang, X., Wang, H., Qiao, F., Li, E., Mei, X., 2024. Numerical investigation of a novel cold plate design with uniform circular hollow fins for battery thermal management systems. Applied Thermal Engineering, 237, 121791. doi: https://doi.org/10.1016/j.applthermaleng.2023.121791. 
[27]    Azmi, W.H., Sharma, K.V., Mamat, R., Alias, A.B.S., Misnon, I.I., 2012. Correlations for thermal conductivity and viscosity of water based nanofluids. IOP Conference Series: Materials Science and Engineering, 36, 012029. doi: 10.1088/1757-899X/36/1/012029.
[28]    Sarvar-Ardeh, S., Rafee, R., Rashidi, S., 2022. Effects of convergence and superhydrophobicity on the hydrothermal features of the tapered double-layer microchannel. International Journal of Thermal Sciences, 181, p.107745.
[29]    Bejan, A., 2013. Convection heat transfer, Fourth Edition, John wiley & sons, New York.
[30]    Sarvar‐Ardeh, S., Rafee, R., Rashidi, S., 2023. Heat transfer and entropy generation of hybrid nanofluid inside the convergent double‐layer tapered microchannel, Mathematical Methods in the Applied Sciences, 46, pp. 11618-11641. doi: https://doi.org/10.1002/mma.8286. 
[31]    Sarvar‐Ardeh, S., Rafee, R., Rashidi, S., 2023. Enhancing the performance of liquid-based battery thermal management system by porous substrate minichannel. Journal of Energy Storage, 71, 108142. doi: https://doi.org/10.1016/j.est.2023.108142.