A Two-Dimensional Cell Model of Phases Transport in a Fluidized Bed Column: Development and Validation

Document Type : Full Length Research Article

Author

Independent researcher, Partizanski put b.b. 111a, 85355, Sutomore, Montenegro

Abstract

Fluidized bed apparatuses are widely used in chemical engineering. Description of the hydrodynamic state of the apparatus is the starting point for predicting most technological operations in gas-solid flows. The object of this study is the gas and solids distributions in a fluidized bed column. The key aim of the study is to develop a simple yet informative mathematical model of the migration of gas and particulate solids in a fluidized bed column. The model is developed to solve the problem in a two-dimensional formulation. The phase migrations of the fluidized bed along the height of the column are described on the basis of the mathematical apparatus of the theory of Markov chains, and an explicit difference scheme is used for the mathematical model of particle transfer in the radial direction. A cell of small but finite size acts as a representative volume of the simulated system. The representative volume of such geometry is apparently used for modeling the motion of fluidized bed phases for the first time. At the same time, it is precisely this model structure that corresponds to the tradition of identifying the radial and axial coefficients of particle macrodiffusion. Parametric identification of the model is carried out on the basis of the empirical relationships known from the literature. The numerical experiments performed in the study showed the qualitative consistency of the proposed model. A comparison of calculations with the results of a natural experiment also confirmed the presence of predictive capabilities in the model. Thus, the proposed model can be considered as a reliable scientific basis for computer methods for calculating fluidized bed devices.

Keywords

Main Subjects


[1]    de Munck, M.J.A., Peters, E.A.J.F., Kuipers, J.A.M. 2023. Fluidized bed gas-solid heat transfer using a CFD-DEM coarse-graining technique. Chemical Engineering Science, 280, 119048. doi: https://doi.org/10.1016/j.ces.2023.119048.
[2]    Deen, N.G., Van Sint Annaland, M., Van der Hoef, M.A., Kuipers, J.A.M. 2007. Review of discrete particle modeling of fluidized beds. Chemical Engineering Science, 62, pp. 28–44. doi: https://doi.org/10.1016/j.ces.2006.08.014.
[3]    Davidson, J.F., Harrison, D., 1971. Fluidization, Academic Press, London, New York.
[4]    Balag, J., Franco, D.A.T., Miral, V.G., Reyes, V., Tongco, L.J., Lopez, E.C.R., 2023. Recent Advances in Particle Fluidization. ASEC 2023, 62. doi: https://doi.org/10.3390/ASEC2023-15321.
[5]    Chen, C., 2016. Investigations on Mesoscale Structure in Gas–Solid Fluidization and Heterogeneous Drag Model, in: Springer Berlin Heidelberg, Berlin, Heidelberg, doi: https://doi.org/10.1007/978-3-662-48373-2.
[6]    Wang, J., Ren, C., Yang, Y., Hou, L., 2009.  Characterization of Particle Fluidization Pattern in a Gas Solid Fluidized Bed Based on Acoustic Emission (AE) Measurement. Ind. Eng. Chem. Res., 48, pp. 8508–8514. doi: https://doi.org/10.1021/ie8018774.
[7]    Van Der Hoef, M.A., Ye, M., Van Sint Annaland, M., Andrews, A.T., Sundaresan, S., Kuipers, J.A.M., 2006. Multiscale Modeling of Gas-Fluidized Beds. Advances in Chemical Engineering, 31, pp. 65–149. doi: https://doi.org/10.1016/S0065-2377(06)31002-2.
[8]    Di Renzo, A., Scala, F., Heinrich, S., 2021. Recent Advances in Fluidized Bed Hydrodynamics and Transport Phenomena—Progress and Understanding. Processes, 9, (2021)639. doi: https://doi.org/10.3390/pr9040639.
[9]    Lettieri, P., Mazzei, L., 2009. Challenges and Issues on the CFD Modeling of Fluidized Beds: A Review. The Journal of Computational Multiphase Flows, 1, pp. 83–131. doi:  https://doi.org/10.1260/175748209789563937.
[10]    Patterson, E.E., Halow, J., Daw, S., 2010. Innovative Method Using Magnetic Particle Tracking to Measure Solids Circulation in a Spouted Fluidized Bed. Ind. Eng. Chem. Res., 49, pp. 5037–5043. doi: https://doi.org/10.1021/ie9008698.
[11] Grace,     J.R., 1997. Circulating fluidized beds, 1st ed., Blackie Academic & Professional, London, New York.
[12]    Esin, A., Altun, M., 1984. Correlation of axial mixing of solids in fluidized beds by a dispersion coefficient. Powder Technology, 39, pp. 241–244. doi: https://doi.org/10.1016/0032-5910(84)85041-X.
[13]    Geldart, D., 1973. Types of gas fluidization. Powder Technology, 7, (1973)pp. 285–292. doi: https://doi.org/10.1016/0032-5910(73)80037-3.
[14]    Shaul, S., Rabinovich, E., Kalman, H., 2014. Typical Fluidization Characteristics for Geldart’s Classification Groups. Particulate Science and Technology, 32, pp. 197–205. doi: https://doi.org/10.1080/02726351.2013.842624.
[15]    Cocco, R., Chew, J.W., 2023. 50 years of Geldart classification. Powder Technology, 428 118861. doi: https://doi.org/10.1016/j.powtec.2023.118861.
[16]    Drake, J.B., Heindel, T.J., 2012. Comparisons of Annular Hydrodynamic Structures in 3D Fluidized Beds Using X-Ray Computed Tomography Imaging. Journal of Fluids Engineering, 134, 081305. doi: https://doi.org/10.1115/1.4007119.
[17]    Sun, J., Yan, Y., 2016. Non-intrusive measurement and hydrodynamics characterization of gas–solid fluidized beds: a review. Meas. Sci. Technol., 27,  112001. doi: https://doi.org/10.1088/0957-0233/27/11/112001.
[18]    Errigo, M., Windows-Yule, C., Materazzi, M., Werner, D., Lettieri, P., 2024. Non-invasive and non-intrusive diagnostic techniques for gas-solid fluidized beds – A review. Powder Technology, 431, 119098. doi: https://doi.org/10.1016/j.powtec.2023.119098.
[19]    Golshan, S., Sotudeh-Gharebagh, R., Zarghami, R., Mostoufi, N., Blais, B., Kuipers, J.A.M., 2020. Review and implementation of CFD-DEM applied to chemical process systems. Chemical Engineering Science, 221, 115646. doi: https://doi.org/10.1016/j.ces.2020.115646.
[20]    Mladenovic, M., Nemoda, S., Paprika, M., Marinkovic, A., 2019. Application of analytical and CFD models of liquid fuels combustion in a fluidized bed. Therm Sci., 23, pp. 1627–1636. doi: https://doi.org/10.2298/TSCI180226317M.
[21]    Ma, H., Zhou, L., Liu, Z., M Chen, M., Xia, X., Zhao, Y., 2022. A review of recent development for the CFD-DEM investigations of non-spherical particles. Powder Technology, 412 117972. doi: https://doi.org/10.1016/j.powtec.2022.117972.
[22]    Berthiaux, H., Mizonov, V., Zhukov, V., 2005. Application of the theory of Markov chains to model different processes in particle technology. Powder Technology, 157, pp. 128–137. doi: https://doi.org/10.1016/j.powtec.2005.05.019.
[23]    Berthiaux, H., Mizonov, V., 2008. Applications of Markov Chains in Particulate Process Engineering: A Review. Can. J. Chem. Eng., 82, pp. 1143–1168. doi: https://doi.org/10.1002/cjce.5450820602.
[24]    Dehling, H.G., Hoffmann, A.C., Stuut, H.W., 1999. Stochastic Models for Transport in a Fluidized Bed. SIAM J. Appl. Math., 60, pp. 337–358. doi: https://doi.org/10.1137/S0036139996306316.
[25]    Cronin, K., Catak, M., Bour, J., Collins, A.,  Smee, J., 2011. Stochastic modelling of particle motion along a rotary drum. Powder Technology, 213, pp. 79–91. doi: https://doi.org/10.1016/j.powtec.2011.07.009.
[26]    Li, J., Huang, W., 2018. From Multiscale to Mesoscience: Addressing Mesoscales in Mesoregimes of Different Levels. Annu. Rev. Chem. Biomol. Eng., 9, pp. 41–60. doi: https://doi.org/10.1146/annurev-chembioeng-060817-084249.
[27]    Di Renzo, A., Napolitano, E., Di Maio, F., 2021. Coarse-Grain DEM Modelling in Fluidized Bed Simulation: A Review. Processes, 9, 279. doi: https://doi.org/10.3390/pr9020279.
[28]    Catak, M., Cronin, K., Medina-Tellez, D., 2011. Markov Chain Modeling of Fluidized Bed Granulation Incorporating Simultaneous Aggregation and Breakage. Ind. Eng. Chem. Res., 50, pp. 10811–10823. doi: https://doi.org/10.1021/ie102513v.
[29]    Li, J., Kwauk, M., 2001. Multiscale Nature of Complex Fluid−Particle Systems. Ind. Eng. Chem. Res., 40, pp. 4227–4237. doi: https://doi.org/10.1021/ie0011021.
[30]    Lu, B., Niu, Y., Chen, F., Ahmad, N., Wang, W., Li, J., 2019. Energy-minimization multiscale based mesoscale modeling and applications in gas-fluidized catalytic reactors. Reviews in Chemical Engineering, 35, pp. 879–915. doi: https://doi.org/10.1515/revce-2017-0023.
[31]    Zhuang, Y., Chen, X., Liu, D., 2016. Stochastic bubble developing model combined with Markov process of particles for bubbling fluidized beds. Chemical Engineering Journal, 291, pp. 206–214. doi: https://doi.org/10.1016/j.cej.2016.01.095.
[32]    Hernández-Jiménez, F., Sánchez-Delgado, S., Gómez-García, A., Acosta-Iborra, A., 2011. Comparison between two-fluid model simulations and particle image analysis & velocimetry (PIV) results for a two-dimensional gas–solid fluidized bed. Chemical Engineering Science, 66, pp. 3753–3772. doi: https://doi.org/10.1016/j.ces.2011.04.026.
[33]    Link, J., Zeilstra, C., Deen, N., Kuipers, H., 2008. Validation of a Discrete Particle Model in a 2D Spout-Fluid Bed Using Non-Intrusive Optical Measuring Techniques. Can. J. Chem. Eng., 82, pp. 30–36. doi: https://doi.org/10.1002/cjce.5450820105.
[34]    Ismail, T.M., Abd El-Salam, M., Monteiro, E., Rouboa, A., 2016. Eulerian – Eulerian CFD model on fluidized bed gasifier using coffee husks as fuel. Applied Thermal Engineering, 106, pp. 1391–1402. doi: https://doi.org/10.1016/j.applthermaleng.2016.06.102.
[35]    Reddy, P.N., Verma, V., Kumar, A., Awasthi, M.K., 2023. CFD Simulation and Thermal Performance Optimization of Channel Flow with Multiple Baffles. Journal of Heat and Mass Transfer Research, 10, pp. 257–268. doi: https://doi.org/10.22075/jhmtr.2023.31108.1458.
[36]    Vahedi, S.M., Parvaz, F., Rafee, R., Khandan Bakavoli, M., 2018. Computational fluid dynamics simulation of the flow patterns and performance of conventional and dual-cone gas-particle cyclones. Journal of Heat and Mass Transfer Research, 5, pp. 27–38. doi: https://doi.org/10.22075/jhmtr.2017.11918.1170.
[37]    Zhonghua, W., Mujumdar, A.S., 2008. CFD modeling of the gas–particle flow behavior in spouted beds. Powder Technology, 183, 260-272. doi: https://doi.org/10.1016/j.powtec.2007.07.040.
[38]    Feng, Y.Q., Xu, B.H., Zhang, S.J., Yu, A.B., Zulli, P., 2004. Discrete particle simulation of gas fluidization of particle mixtures. AIChE Journal, 50, pp. 1713–1728. doi: https://doi.org/10.1002/aic.10169.
[39]    Zhao, Y., Shi, X., Wang, C., Lan, X., Gao, J., 2023. Study on flow characteristics of turbulent fluidized bed with variable gas velocity due to chemical reactions. Powder Technology, 416, 118211. doi: https://doi.org/10.1016/j.powtec.2022.118211.
[40]    Liu, F., Li, C., Zeng, X., Chen, J., Guan, J., Yang, L., 2024. Study on the flow and collision characteristics of catalyst particles in FCC reactor. Powder Technology, 438, 119642. doi: https://doi.org/10.1016/j.powtec.2024.119642.
[41]    Zhao, Y., Shi, X., Lan, X., Gao, J., Jing, W., Xiong, Q., 2024. Simulation analysis of micro-explosion during emulsification feeding of residue fluidized catalytic cracking. Applied Thermal Engineering, 250, 123514. doi: https://doi.org/10.1016/j.applthermaleng.2024.123514.
[42]    Ma, H., Zhao, Y., 2018. CFD-DEM investigation of the fluidization of binary mixtures containing rod-like particles and spherical particles in a fluidized bed. Powder Technology, 336, 533–545. doi: https://doi.org/10.1016/j.powtec.2018.06.034.
[43]    He, L., Liu, Z., Zhao, Y., 2022. An extended unresolved CFD-DEM coupling method for simulation of fluid and non-spherical particles. Particuology, 68, 1–12. doi: https://doi.org/10.1016/j.partic.2021.11.001.
[44]    Xu, J., Zhao, P., Zhang, Y., Wang, J., Ge, W., 2022. Discrete particle methods for engineering simulation: Reproducing mesoscale structures in multiphase systems. Resources Chemicals and Materials, 1, pp. 69–79. doi: https://doi.org/10.1016/j.recm.2022.01.002.
[45]    Liu, X., Zhu, A., Yang, L., Xu, J., Li, H., Ge, W., Ye, M., 2022. Numerical simulation of commercial MTO fluidized bed reactor with a coarse-grained discrete particle method — EMMS–DPM,. Powder Technology, 406, 117576. doi: https://doi.org/10.1016/j.powtec.2022.117576.
[46]    Wang, T., Zhang, F., Furtney, J., Damjanac, B., 2022. A review of methods, applications and limitations for incorporating fluid flow in the discrete element method. Journal of Rock Mechanics and Geotechnical Engineering, 14, pp. 1005–1024. doi: https://doi.org/10.1016/j.jrmge.2021.10.015.
[47]    Gutsche, R., Hartmann, K., 1995. Application of Markov chains in deriving for predicting the dynamic behaviour of chemical engineering processes. Computers & Chemical Engineering, 19 pp. 729–734. doi: https://doi.org/10.1016/0098-1354(95)87121-7.
[48]    Tamir, A., 1998. Applications of Markov chains in chemical processes, in: Elsevier, pp. 498–589. doi: https://doi.org/10.1016/B978-044482356-4/50007-9.
[49]    Mitrofanov, A., Mizonov, V., Tannous, K., Ovchinnikov, L., 2018. A Markov chain model to describe fluidization of particles with time-varying properties. Particulate Science and Technology, 36, 244–253. doi: https://doi.org/10.1080/02726351.2016.1243180.
[50]    Sánchez-Prieto, J., Hernández-Jiménez, F., Garcia-Gutierrez, L.M., Soria-Verdugo, A., 2017. Experimental study on the characteristic mixing time of solids and its link with the lateral dispersion coefficient in bubbling fluidized beds. Chemical Engineering Journal, 307, pp. 113–121. doi: https://doi.org/10.1016/j.cej.2016.08.075.
[51]    Liu, D., Chen, X., 2010. Lateral solids dispersion coefficient in large-scale fluidized beds. Combustion and Flame, 157, pp. 2116–2124. doi: https://doi.org/10.1016/j.combustflame.2010.04.020.
[52]    Castilla, G.M.. Larsson, A., Lundberg, L., Johnsson, F., Pallarès, D., 2020. A novel experimental method for determining lateral mixing of solids in fluidized beds – Quantification of the splash-zone contribution. Powder Technology, 370, pp. 96–103. doi: https://doi.org/10.1016/j.powtec.2020.05.036.
[53]    Bokkers, G.A., Van Sint Annaland, M., Kuipers, J.A.M., 2004. Mixing and segregation in a bidisperse gas–solid fluidised bed: a numerical and experimental study. Powder Technology, 140, pp. 176–186. doi: https://doi.org/10.1016/j.powtec.2004.01.018.
[54]    Sánchez-Prieto, J., Hernández-Jiménez, F., Garcia-Gutierrez, L.M., Soria-Verdugo, A., 2017. Experimental study on the characteristic mixing time of solids and its link with the lateral dispersion coefficient in bubbling fluidized beds. Chemical Engineering Journal, 307, pp. 113–121. doi: https://doi.org/10.1016/j.cej.2016.08.075.
[55]    Köhler, A., Rasch, A., Pallarès, D., Johnsson, F., 2017. Experimental characterization of axial fuel mixing in fluidized beds by magnetic particle tracking. Powder Technology, 316, pp. 492–499. doi: https://doi.org/10.1016/j.powtec.2016.12.093.
[56]    Rhodes, M.J., Wang, X.S., Nguyen, M., Stewart, P., Liffman, K., 2001. Study of mixing in gas-fluidized beds using a DEM model. Chemical Engineering Science, 56, pp. 2859–2866. doi: https://doi.org/10.1016/S0009-2509(00)00524-8.
[57]    Niklasson, F., Thunman, H., Johnsson, F., Leckner, B., 2002. Estimation of Solids Mixing in a Fluidized-Bed Combustor. Ind. Eng. Chem. Res., 41, pp. 4663–4673. doi: https://doi.org/10.1021/ie020173s.
[58]    Borodulya, V.A., Epanov, Yu.G., Teplitskii, Yu.S., 1982. Horizontal particle mixing in a free fluidized bed. Journal of Engineering Physics, 42, pp. 528–533. doi: https://doi.org/10.1007/BF00824945.
[59]    Mizonov, V., Mitrofanov, A., Ogurtzov, A., Tannous, K., 2014. Modeling of Particle Concentration Distribution in a Fluidized Bed by Means of the Theory of Markov Chains. Particulate Science and Technology, 32, pp. 171–178. doi: https://doi.org/10.1080/02726351.2013.839016.
[60]    Mitrofanov, A.V., Mizonov, V.E., Shpeynova, N.S., Vasilevich, S.V., Kasatkina, N.K., 2021. Experimental and Theoretical Study of the Axial Distribution of Solid Phase Particles in a Fluidized Bed, Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 64, pp. 349–362. doi: https://doi.org/10.21122/1029-7448-2021-64-4-349-362.
[61]    Mitrofanov, A., Vasilevich, S., Mal’ko, M., Ogurtsov, A., Shpeynova, N., 2023. Design and verification of the model of structure formation and heat transfer in a fluidized bed apparatus with a heat jacket. ChemChemTech., 5, pp. 128–138. doi: https://doi.org/10.6060/ivkkt.20236605.6748.
[62]    Li, R., Huang, X., Wu, Y., Dong, L., Belošević, S., Milićević, A., Tomanović, I., Deng, L., Che, D., 2023. Comparative analysis on gas–solid drag models in MFIX-DEM simulations of bubbling fluidized bed. Chinese Journal of Chemical Engineering, 64, pp. 64–75. doi: https://doi.org/10.1016/j.cjche.2023.06.002.
[63]    Mikhailov, M.D., Freire, A.P.S., The drag coefficient of a sphere: An approximation using Shanks transform. 2013. Powder Technology, 237, pp. 432–435. doi: https://doi.org/10.1016/j.powtec.2012.12.033.
[64]    Khan, A.R., Richardson, J.F., 1987. The resistance to motion of a solid sphere in a fluid. Chemical Engineering Communications, 62, pp. 135–150. doi: https://doi.org/10.1080/00986448708912056.
[65]    Mitrofanov, A., Ovchinnikov, L., Ovchinnikov, N., Ogurtsov, A., Lapshina, O., 2022. Computational and experimental study of the thermal process in an individual cylindrical particle. ChemChemTech., 65, pp. 97–104. doi: https://doi.org/10.6060/ivkkt.20226509.6679.
[66]    Muir, C.E., Lowry, B.J., Balcom, B.J., 2011. Measuring diffusion using the differential form of Fick’s law and magnetic resonance imaging. New J. Phys., 13, 015005. doi: https://doi.org/10.1088/1367-2630/13/1/015005.
[67]    Chanson, H., 2009. Applied Hydrodynamics: An Introduction to Ideal and Real Fluid Flows, in: 0 ed., CRC Press, p. 464. doi: https://doi.org/10.1201/b11464.
[68]    Lin, J.S., Chen, M.M., Chao, B.T., 1985. A novel radioactive particle tracking facility for measurement of solids motion in gas-fluidized beds. AIChE Journal, 31, pp. 465–473. doi: https://doi.org/10.1002/aic.690310314.
[69]    Yamazaki, R., Ueda, N., Jimbo, G., 1986. Mechanism of incipient fluidization in fluidized bed at elevated temperature. Journal of Chemical Engineering of Japan, 19, pp. 251–257.
[70]    De Chant, L.J., 2005. The venerable 1/7th power law turbulent velocity profile: a classical nonlinear boundary value problem solution and its relationship to stochastic processes. Applied Mathematics and Computation, 161, pp. 463–474. doi: https://doi.org/10.1016/j.amc.2003.12.109.