[1] Parhizkar, H., Ebrahimi. A , and Lekzian, E., 2017. Applying a DSMC solver to explore the effects of heater plates/wall heating in microthruster. Modares Mechanical Engineering, 16(11), p. 123-134. http://dorl.net/dor/20.1001.1.10275940.1395.16.11.21.4
[2] Lekzian, E., Parhizkar, H and Ebrahimi, A., 2018. Study of the effects of preheated wall/plates in microthruster systems. Journal of Theoretical and Applied Mechanics, 56(3), p. 713-725. https://doi.org/10.15632/jtam-pl.56.3.713
[3] Lekzian, E., Ebrahimi, A and Parhizkar, H., 2018. Performance analysis of microelectromechanical thrusters using a direct simulation Monte Carlo solver. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 232(7), p. 1212-1222. https://doi.org/10.1177/0954410017691066
[4] Ma, K., Zhang, Z , Liu Y, and Jiang Z., 2020. Aerodynamic principles of shock-induced combustion ramjet engines. Aerospace Science and Technology, 103, p. 105901. https://doi.org/10.1016/j.ast.2020.105901
[5] Wu, K., Zhang S., Luan, M., and Wang J., 2020. Effects of flow-field structures on the stability of rotating detonation ramjet engine. Acta Astronautica, 168, p. 174-181. https://doi.org/10.1016/j.actaastro.2019.12.022
[6] Sun, L., Bian, F., Lei, X., Sh, D., Bao, F., 2023 Quantitative analysis of enhanced mixing and combustion by lobed mixer in a ramjet engine: Study using hyperbolic Lagrangian coherent structures. Aerospace Science and Technology, 140, p. 108471. https://doi.org/10.1016/j.ast.2023.108471
[7] Choubey, G., Yuvarajan, D., Huang, W., Yan, L., Babazadeh, H., Pandey, K., 2020. Hydrogen fuel in scramjet engines-a brief review. International Journal of Hydrogen Energy, 45(33), p. 16799-16815. https://doi.org/10.1016/j.ijhydene.2020.04.086
[8] Das, N., Pandey, K, and Sharma,K., 2021. A brief review on the recent advancement in the field of jet engine-scramjet engine. Materials Today: Proceedings, 45, p. 6857-6863. https://doi.org/10.1016/j.matpr.2020.12.1035
[9] Tylman, I., Grabowy, R. and Rećko, M., 2019. Thrust and ignition control of valveless pulse jet engine. 20th International Carpathian Control Conference (ICCC). IEEE. https://doi.org/10.1109/CarpathianCC.2019.8766007
[10] Lisanti, J.C., Zhu, X. Guiberti, T,F. and Roberts, W. L., 2022. Active Valve Resonant Pulse Combustor for Pressure Gain Combustion Applications. Journal of Propulsion and Power, 38(2), p. 171-180. https://doi.org/10.2514/1.B38226
[11] Modi, S., Khinchi,S,. Rajpurohit,N. and Rami, A., 2021. Design and development of valveless pulsejet engine. In 2020 3rd International Conference on Energy, Power and Environment: Towards Clean Energy Technologies, (pp. 1-6). IEEE. https://doi.org/10.1109/ICEPE50861.2021.9404374
[12] Rajashekar, C., Raghukumar, HS., Natarajan, R., Jeyaseelan, AR., Isaac, JJ., 2021. Development of a Retro-Reflective Screen-Based Large-Field High-Speed Shadowgraph Flow Visualization Technique and Its Application to a Hydrogen-Fueled Valveless Pulsejet Engine. In Proceedings of the National Aerospace Propulsion Conference. Springer. https://doi.org/10.1007/978-981-15-5039-3_21
[13] Ghulam, M.M., Muralidharan, S., Anand, V., Prisell, E., Gutmark, E., 2024. Operational mechanism of valved-pulsejet engines. Aerospace Science and Technology, 148, p. 109060. https://doi.org/10.1016/j.ast.2024.109060
[14] Anand, V., Jodele, J., Prisell, E., Lyrsell, O., Gutmark, E., 2020. Dynamic features of internal and external flowfields of pulsejet engines. AIAA Journal, 58(10), p. 4204-4211. https://doi.org/10.2514/1.J059685
[15] Anand, V., Jodele, J., Prisell, E., Lyrsell, O., and Gutmark, E., 2021. Visualization of Valved Pulsejet Combustors and Evidence of Compression Ignition. Flow, Turbulence and Combustion, 106(3), p. 901-924. https://doi.org/10.1007/s10494-020-00203-4
[16] Matsuoka, K., Yageta, J., Nakamichi, T., Kasahara, J., Yajima, T., and Kojima, T., 2011. Inflow-driven valve system for pulse detonation engines. Journal of propulsion and power, 27(3), p. 597-607. https://doi.org/10.2514/1.47421
[17] Nguyen, V., Teo, CJ., Chang, PH., Li, JM., and Khoo, BC., 2019. Numerical investigation of the liquid-fueled pulse detonation engine for different operating conditions. Shock Waves, 29, p. 1205-1225. https://doi.org/10.1007/s00193-019-00898-z
[18] Alam, N., Sharma,K. and Pandey, K., 2019. Numerical investigation of flame propagation and performance of obstructed pulse detonation engine with variation of hydrogen and air. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(11), p. 502. https://doi.org/10.1007/s40430-019-2024-0
[19] Suchocki, J., Yu, S., Hoke, J., Naples, A., Schauer, F., Russo, R., 2012. Rotating detonation engine operation. In 50th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition. https://doi.org/10.2514/6.2012-119
[20] Wakita, M., Tamura, M., Sajiki, K., Totani, T., Nagata, H., 2013. Detonation Transition Around Cylindrical Reflector of Pulse Detonation Engine Initiator. Journal of Propulsion and Power, 29(4), p. 825-831. https://doi.org/10.2514/1.B34704
[21] Trzeciak, A. and Gieras,M., 2020. Temperature estimating method for exhaust gases in valveless pulsejet engine. Combustion Engines, 59(3). http://dx.doi.org/10.19206/CE-2020-301
[22] Agarwal, A. and Pitso, I., 2020. Modelling & numerical exploration of pulsejet engine using eddy dissipation combustion model. Materials today: proceedings, 27, p. 1341-1349. https://doi.org/10.1016/j.matpr.2020.02.620
[23] Anand, V., Jodele, J., Knight, E., Prisell, E., Lyrsell, O., Gutmark, E., 2018. Dependence of pressure, combustion and frequency characteristics on valved pulsejet combustor geometries. Flow, Turbulence and Combustion, 100, p. 829-848. https://doi.org/10.1007/s10494-017-9875-1
[24] Yungster, S., Paxson, D.E. and Perkins, H. D., 2018. Computational study of compact ejector-enhanced resonant pulse combustors. Propulsion Conference. https://doi.org/10.2514/6.2018-4786
[25] Qatomah, M., Lisanti, J.C. and Roberts, W., 2018. Influence of fuel composition on the operation of a liquid fueled resonant pulse combustor. Propulsion Conference. https://doi.org/10.2514/6.2018-4571
[26] Min, L., Ling, Y. and Wen-xiang, C., 2016. Experiment analysis of combustion performance in pulse jet engine. Energy procedia, 100, p. 248-252. https://doi.org/10.1016/j.egypro.2016.10.173
[27] Suganya, R., 2015. Design and analysis of improved pulse jet engine. Journal of Scientific Engineering and Technologi Research, 4(14), p. 2684.
[28] Nazarparvar A. and Fathali M, 2015. Investigation of the Impact of Geometric Characteristics of a Valveless Pulse Jet Engine on Thrust. Aerospace Science and Technology Journal [in persian].
[29] Taherishad M., Bazazadeh M., Adami M., Hamledari J., 2014. Design, Construction, and Testing of a Valveless Pulse Jet Engine, Investigation of Geometric Parameters on Output Thrust, and Combustion Study. International Conference on Iranian Aerospace [in persian]
[30] Rajashekar, C., Raghukumar, HS., Reddy, M., Bhaskaran, M., and Isaac, J.J., 2013. High-Speed Shadowgraph Visualisation of Flow in a Miniature Hydrogen-Fuelled Valveless Pulsejet Engine. In Proceedings of International Conference on Intelligent Unmanned Systems.
[31] Evans, R. and Alshami, A., 2009. Pulse jet orchard heater system development: Part I. Design, construction, and optimization. Transactions of the ASABE, 52(2), p. 331-343.
[32] Paxson, D. and Dougherry K., 2008. Operability of an ejector enhanced pulse combustor in a gas turbine environment. In 46th AIAA Aerospace Sciences Meeting and Exhibit. https://doi.org/10.2514/6.2008-119
[33] Geng, T., Kiker Jr A., Ordon, R., Kuznetsov, AV., Zeng, TF., Roberts, WL., 2007. Combined numerical and experimental investigation of a hobby-scale pulsejet. Journal of propulsion and power. 23(1), p. 186-193. https://doi.org/10.2514/1.18593
[34] Nakano, T., Matsuo, S., Teramoto, K. and Setoguchi, T., 2006. Effect of exit geometry of tail pipe on the performance of pulse jet engines. Journal of Thermal Science, 15, p. 263-268. https://doi.org/10.1007/s11630-006-0263-8
[35] Litke, P., Schauer, F., Paxson, D., Bradley, R., Hoke, J., 2005. Assessment of the Performance of a Pulsejet and Comparison with a Pulsed-Detonation Engine. in 43rd AIAA Aerospace Sciences Meeting and Exhibit. https://doi.org/10.2514/6.2005-228
[36] Blomquist, C., 1982. Experimental gas-fired pulse-combustion studies.
[37] Mason, S., Miller, R. and Taylor, M., 2008. Fluid Mechanics of Pulse Pressure-Gain Combustors. In 46th AIAA Aerospace Sciences Meeting and Exhibit. https://doi.org/10.2514/6.2008-118
[38] John, J.E.A. and Keith, T.G., 2006. Gas Dynamics. Pearson Prentice Hall.
[39] Uskov, V.N. and Mostovykh, P.S., 2010. Interference of stationary and non-stationary shock waves. Shock Waves, 20(2), p. 119-129. https://doi.org/10.1007/s00193-009-0243-5
[40] Bulat, P.V. and Uskov, V.N., 2016. Gas-dynamic waves and discontinuities. International Electronic Journal of Mathematics Education, 11(5), p. 1101-1111.
[41] Atmosphere, U.S., 1976. National Oceanic and Atmospheric Administration (NOAA). National Aeronautics and Space Administration (NASA). United States Air Force, Washington, DC.
[42] Hosseini, S., Vaziry-Zanjany, M.A., Ovesy, H.R., and Lekzian, E., 2023. Multi-Objective Multidisciplinary Design Optimization of Regional Truss-Braced Wing Jet Aircraft. In Proceedings of the Aerospace Europe Conference. http://dx.doi.org/10.13009/EUCASS2023-007
[43] Lekzian, E., Farshi, H. and Modanlou, R., 2023. Aerothermodynamic off-design performance study of a fixed double bypass duct turbofan engine. The Journal of Engine Research, 70(3), p. 62-75. https://doi.org/10.22034/er.2024.2019254.1022
[44] Lekzian, E. and Modanlou, R., 2024. Performance Study of Separate Exhaust Innovative Turbofan Engine Configurations with the Control Mechanism of a Baseline Engine. AUT Journal of Mechanical Engineering, 8(3), pp. 257-272. https://doi.org/10.22060/ajme.2024.23154.6107
[45] Hosseini, S., Zanjany, M.A.V., Oveysy, H.R. and Lekzian, E., 2024. Application of Lambda Framework for Aircraft Multidisciplinary Design, Analysis and Optimization. In 34th Congress of the International Council of the Aeronautical Sciences, ICAS 2024, Florence, Italy.