[1] Raveesh, G., Goyal, R. & Tyagi, S. K., 2025. Sugarcane bagasse derived composite sorbent for sorption based atmospheric water harvesting. Separation and Purification Technology, 356, 129820.
[2] Wang, M., Liu, E., Jin, T., Zafar, S.-U., Mei, X., Fauconnier, M.-L. & De Clerck, C., 2024. Towards a better understanding of atmospheric water harvesting (AWH) technology. Water Research, 250, 121052.
[3] Agrawal, A. & Kumar, A., 2024. A comprehensive review of fresh water production from atmospheric air – techniques, challenges and opportunities. Environment, Development and Sustainability, pp.1-36.
[4] Ehtisham, M., Saeed-ul-hassan, M. & Poater, A., 2025. A comprehensive review of approaches, systems, and materials used in adsorption-based atmospheric water harvesting. Science of The Total Environment, 958, 177885.
[5] Xu, W. & Yaghi, O. M., 2020. Metal–organic frameworks for water harvesting from air, anywhere, anytime. ACS central science, 6, 1348-1354.
[6] Almassad, H. A., Abaza, R. I., Siwwan, L., AL-Maythalony, B. & Cordova, K. E., 2022. Environmentally adaptive MOF-based device enables continuous self-optimizing atmospheric water harvesting. Nature communications, 13, 4873.
[7] Ejeian, M. & Wang, R., 2021. Adsorption-based atmospheric water harvesting. Joule, 5, 1678-1703.
[8] Tashtoush, B. & Alshoubaki, A., 2023. Atmospheric water harvesting: A review of techniques, performance, renewable energy solutions, and feasibility. Energy, 128186.
[9] Karami, M. & Nasiri Gahraz, S. S., 2022. Improving thermal performance of a solar thermal/desalination combisystem using nano fluid-based direct absorption solar collector. Scientia Iranica, 29, 1288-1300.
[10] Karami, M. & Nasiri Gahraz, S. S., 2021. Transient simulation and life cycle cost analysis of a solar polygeneration system using photovoltaic-thermal collectors and hybrid desalination unit. Journal of Heat and Mass Transfer Research, 8, 243-256.
[11] Alkhudhiri, A., Darwish, N. & Hilal, N., 2012. Membrane distillation: A comprehensive review. Desalination, 287, 2-18.
[12] Kim, H., Rao, S. R., Kapustin, E. A., Zhao, L., Yang, S., Yaghi, O. M. & Wang, E. N., 2018. Adsorption-based atmospheric water harvesting device for arid climates. Nature communications, 9, 1191.
[13] Kim, H., Yang, S., Rao, S. R., Narayanan, S., Kapustin, E. A., Furukawa, H., Umans, A. S., Yaghi, O. M. & Wang, E. N., 2017. Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science, 356, 430-434.
[14] Hanikel, N., Prévot, M. S., Fathieh, F., Kapustin, E. A., Lyu, H., Wang, H., Diercks, N. J., Glover, T. G. & Yaghi, O. M., 2019. Rapid cycling and exceptional yield in a metal-organic framework water harvester. ACS central science, 5, 1699-1706.
[15] Fathieh, F., Kalmutzki, M. J., Kapustin, E. A., Waller, P. J., Yang, J. & Yaghi, O. M., 2018. Practical water production from desert air. Science advances, 4, eaat3198.
[16] Ejeian, M., Entezari, A. & Wang, R., 2020. Solar powered atmospheric water harvesting with enhanced LiCl/MgSO4/ACF composite. Applied Thermal Engineering, 176, 115396.
[17] Sleiti, A. K., Al-Khawaja, H., Al-Khawaja, H. & Al-Ali, M., 2021. Harvesting water from air using adsorption material–Prototype and experimental results. Separation and Purification Technology, 257, 117921.
[18] Kumar, P. M., Arunthathi, S., Prasanth, S. J., Aswin, T., Antony, A. A., Daniel, D., Mohankumar, D. & Babu, P. N., 2021. Investigation on a desiccant based solar water recuperator for generating water from atmospheric air. Materials Today: Proceedings, 45, 7881-7884.
[19] Kumar, M. & Yadav, A., 2015. Experimental investigation of design parameters of solar glass desiccant box type system for water production from atmospheric air. Journal of Renewable and Sustainable Energy, 7.
[20] Essa, F., Elsheikh, A. H., Sathyamurthy, R., Manokar, A. M., Kandeal, A., Shanmugan, S., Kabeel, A., Sharshir, S. W., Panchal, H. & Younes, M., 2020. Extracting water content from the ambient air in a double-slope half-cylindrical basin solar still using silica gel under Egyptian conditions. Sustainable Energy Technologies and Assessments, 39, 100712.
[21] Srivastava, S. & Yadav, A., 2018. Water generation from atmospheric air by using composite desiccant material through fixed focus concentrating solar thermal power. Solar Energy, 169, 302-315.
[22] Elashmawy, M. & Alshammari, F., 2020. Atmospheric water harvesting from low humid regions using tubular solar still powered by a parabolic concentrator system. Journal of Cleaner Production, 256, 120329.
[23] Fathy, M. H., Awad, M. M., Zeidan, E.-S. B. & Hamed, A. M., 2020. Solar powered foldable apparatus for extracting water from atmospheric air. Renewable energy, 162, 1462-1489.
[24] Wang, X., Li, X., Liu, G., Li, J., Hu, X., Xu, N., Zhao, W., Zhu, B. & Zhu, J., 2019. An interfacial solar heating assisted liquid sorbent atmospheric water generator. Angewandte Chemie, 131, 12182-12186.
[25] LaPotin, A., Zhong, Y., Zhang, L., Zhao, L., Leroy, A., Kim, H., Rao, S. R. & Wang, E. N., 2021. Dual-stage atmospheric water harvesting device for scalable solar-driven water production. Joule, 5, 166-182.
[26] Raveesh, G., Goyal, R. & Tyagi, S. K., 2025. Sugarcane bagasse derived composite sorbent for sorption based atmospheric water harvesting. Separation and Purification Technology, 356, 129820.
[27] Li, R., Shi, Y., Wu, M., Hong, S. & Wang, P., 2020. Improving atmospheric water production yield: Enabling multiple water harvesting cycles with nano sorbent. Nano energy, 67, 104255.
[28] Wang, J., Wang, R., Tu, Y. & Wang, L., 2018. Universal scalable sorption-based atmosphere water harvesting. Energy, 165, 387-395.
[29] Wang, J., Liu, J., Wang, R. & Wang, L., 2017. Experimental investigation on two solar-driven sorption based devices to extract fresh water from atmosphere. Applied Thermal Engineering, 127, 1608-1616.
[30] Agrawal, A. & Kumar, A., 2025. Experimental comparison and 6E analyses of double-ended evacuated tube collector based atmospheric water harvesting with and without PCM. Solar Energy Materials and Solar Cells, 282, 113343.
[31] Agrawal, A. & Kumar, A., 2024. Experimental comparison of solar‐powered adsorption‐based atmospheric water harvesting using air‐to‐air & water‐to‐air heat exchanger for condensation. Environmental Progress & Sustainable Energy, 43.
[32] Agrawal, A. & Kumar, A., 2024. Double-ended vacuum tube collector based solar powered atmospheric water harvesting by using composite desiccant material ‘Jute/CaCl₂’. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 46, 9972-9993.
[33] Kang, H., Lee, G. & Lee, D.-Y., 2015. Explicit analytic solution for heat and mass transfer in a desiccant wheel using a simplified model. Energy, 93, 2559-2567.
[34] Chung, J. D., Lee, D.-Y. & Yoon, S. M., 2009. Optimization of desiccant wheel speed and area ratio of regeneration to dehumidification as a function of regeneration temperature. Solar Energy, 83, 625-635.
[35] Chung, J. D., 2017. Modeling and analysis of desiccant wheel. Desiccant Heating, Ventilating, and Air-Conditioning Systems, 11-62.
[36] Nia, F. E., Van Paassen, D. & Saidi, M. H., 2006. Modeling and simulation of desiccant wheel for air conditioning. Energy and buildings, 38, 1230-1239.
[37] Heidarinejad, G. & Pasdarshahri, H., 2010. The effects of operational conditions of the desiccant wheel on the performance of desiccant cooling cycles. Energy and Buildings, 42, 2416-2423.
[38] Harshe, Y. M., Utikar, R. P., Ranade, V. V. & Pahwa, D., 2005. Modeling of rotary desiccant wheels. Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology, 28, 1473-1479.
[39] Zhang, L. & Niu, J., 2002. Performance comparisons of desiccant wheels for air dehumidification and enthalpy recovery. Applied Thermal Engineering, 22, 1347-1367.
[40] NG, K. C., CHUA, H., CHUNG, C., LOKE, C., KASHIWAGI, T., AKISAWA, A. & SAHA, B. B., 2001. Experimental investigation of the silica gel–water adsorption isotherm characteristics. Applied Thermal Engineering, 21, 1631-1642.
[41] Riffel, D. B., Schmidt, F. P., Belo, F. A., Leite, A. P., Cortés, F. B., Chejne, F. & Ziegler, F., 2011. Adsorption of water on Grace Silica Gel 127B at low and high pressure. Adsorption, 17, 977-984.