Influence of Coil Geometry on Magnetic Nanoparticle Hyperthermia in the Treatment of Peritoneal Metastasis

Document Type : Full Length Research Article

Authors

1 Department of Physics, Faculty of Science, Bu-Ali Sina University, Hamadan, Iran

2 Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran

3 Department of Medical Physics, Faculty of Medicine Isfahan University of Medical Sciences, Isfahan, Iran

Abstract

This study examines the impact of magnetic hyperthermia on treating peritoneal metastasis and analyzes the effect of coil geometry. The aim is to evaluate the efficacy of localized heating in eliminating cancer cells while preserving healthy tissue, with a specific focus on the influence of coil geometry on magnetic nanoparticle hyperthermia for treating peritoneal metastasis. Magnetic nanoparticles concentrate heat within the tumor, minimizing damage to surrounding tissues. Magnetic nanoparticles Fe3O4 were used to raise tumor temperatures to 42–46°C under an alternating magnetic field. A numerical simulation based on the finite element method was conducted to assess the effects of coil geometry and tumor location on heat transfer. The magnetic field distribution was calculated using Maxwell’s equations, while heat generation by nanoparticles was determined through Rosensweig’s theory. The Pennes bio-heat transfer equation was then applied to evaluate temperature distribution in both tumor and healthy tissues. The findings indicate that coil geometry significantly affects the distribution of the magnetic field, heat, and temperature. Cylindrical, flat, conical, and inverted conical coils generate the lowest overall heat while ensuring even distribution, leading to minimal temperature variations across the tumor. Therefore, these coils produce a more uniform temperature distribution within gastric tumors and peritoneal metastases. Additionally, they achieve the therapeutic temperature range required for cancer treatment. The temperature in healthy tissue remains around 37°C, confirming the absence of damage. Therefore, the aforementioned coils are the most suitable for use in magnetic hyperthermia as a treatment for gastric cancer and peritoneal metastasis.

Keywords

Main Subjects


  1. Siegel, R. L., Miller, K. D., Wagle, N. S., Jemal, A., 2023. Cancer statistics. CA: A Cancer Journal for Clinicians, 73(1), pp. 17–48.
  2. Sudhakar, A., 2009. History of cancer: ancient and modern treatment methods. Journal of Cancer Science and Therapy, 1, pp. 1. doi:10.4172/1948-5956.100000e2
  3. Valastyan, S., Weinberg, R.A., 2011. Tumor metastasis: molecular insights and evolving paradigms. Cell, 147, pp. 275-292.
  4. Cortés-Guirial, D., Hübner, M., Alyami, M., Bhatt, A., Ceelen, W., Glehen, O., Lordick, F., Ramsay, R., Sgarbura, O., Speeten, K.V., Turaga, K.K., Chand, M., 2021. Primary and metastatic peritoneal surface malignancies. Nature Reviews Disease Primers, 7, p. 91.
  5. Coccolini, F., Gheza, F., Lotti, M., Virzi, S., Iusco, D., Ghermandi, C., Melotti, R., Baiocchi, G., Giulini, S.M., Ansaloni, L., Catena, F., 2013. Peritoneal carcinomatosis. World Journal of Gastroenterology, 19(41), pp. 6979-6994.
  6. Rao, W., Deng, Z. S., 2010. A review of hyperthermia combined with radiotherapy/chemotherapy on malignant tumors. Critical Reviews in Biomedical Engineering, 38(1), pp. 1-22. doi:10.1615/CritRevBiomedEng.v38. 80
  7. Hedayatnasab, Z., Abnisa, F., Wan Daud, W., 2017. Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Materials and Design, 123, pp. 174-196. doi: 10.1016/j.matdes.2017.03.036
  8. Darvishi, V., Navidbakhsh, M., Amanpour, S., 2022. Heat and mass transfer in the hyperthermia cancer treatment by magnetic nanoparticles. Heat and Mass Transfer, 58, pp. 1029–1039. doi: 10.1007/s00231-021-03161-3
  9. Peiravi, M., Eslami, H., Ansari, M., Zare-Zardini, H., 2022. Magnetic hyperthermia: Potentials and limitations. Journal of the Indian Chemical Society, 99, pp. 100269. doi: 10.1016/j.jics.2021.100269
  10. Rajan, A., Sahu, N. K., 2020. Review on magnetic nanoparticle-mediated hyperthermia for cancer therapy. Journal of Nanoparticle Research, 22, pp. 319. doi:10.1007/s11051-020-05045-9
  11. Avugadda, S. K., Fernandez-Cabada, T., Soni, N., Cassani, M., Mai, B. T., Chantrell, R., Pellegrino, T., 2021. Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer. Soc. Rev. 50, pp. 11614–11667. doi: 10.1039/D1CS00427A
  12. Johannsen, M., Thiesen, B., Wust, P., Jordan, A., 2010. Magnetic nanoparticle hyperthermia for prostate cancer. International Journal of Hyperthermia, 26, pp. 790-795. doi: 10.3109/02656731003745740
  13. Golneshan, A.A., Lahonian, M., 2011. Diffusion of magnetic nanoparticles in a multi-site injection process within a biological tissue during magnetic fluid hyperthermia using lattice Boltzmann method. Mechanics Research Communications, 38, pp. 425-430. doi: 10.1016/j.mechrescom.2011.05.012
  14. Lahonian, M., Golneshan, A.A., 2011. Numerical study of temperature distribution in a spherical tissue in magnetic fluid hyperthermia using lattice Boltzmann method. IEEE Transactions on NanoBioscience, 10, pp. 262-268. doi: 10.1109/TNB.2011.2177100
  15. Adhikary, K., Banerjee, M., 2016. A thermo fluid analysis of the magnetic nanoparticles enhanced heating effects in tissues embedded with large blood vessels during magnetic fluid hyperthermia. Journal of Nanoparticles, pp. 6309231. doi: 10.1155/2016/6309231
  16. Liu, W., Chen, X., 2015. Numerical analysis of electromagnetically induced heating and bioheat transfer for magnetic fluid hyperthermia. IEEE Transactions on Magnetics, 51, pp. 1-4. doi: 10.1109/TMAG.2014.2358268
  17. Matsumi, Y., Kagawa, T., Yano, S., Tazawa, H., Shigeyasu, K., Takeda, Sh., Ohara, T., Aono, H., Hoffman, R.M., Fujiwara T., Kishimoto, H., 2021. Hyperthermia generated by magnetic nanoparticles for effective treatment of disseminated peritoneal cancer in an orthotopic nude-mouse model. Cell Cycle, 20, 1122–1133 doi: 10.1080/15384101.2021.1919441
  18. Shoshiashvili, L., Shamatava, I., Kakulia, D., Shubitidze, F., 2023. Design and Assessment of a novel biconical human-sized alternating magnetic field coil for MNP hyperthermia treatment of deep-seated cancer. Cancers, 15, pp. 1672. doi: 10.3390/cancers15061672
  19. Attaluri, A., Jackowski, J., Sharma, A., Kandala, S. K., Nemkov, V., Yakey, Ch., DeWeese, Th.L., Kumar, A., Goldstein, R. C., 2020. Design and construction of a Maxwell-type induction coil for magnetic nanoparticle hyperthermia. International Journal of Hyperthermia, 37, pp. 1–14. doi: 10.1080/02656736.2019.1704448
  20. Bobade, R. S., Yadav, Sh. K., 2017. Lateral forces in the helical compression Sspring. International Journal for Research in Applied Science & Engineering Technology, 5(4), pp. 98-102.
  21. Misron, N., Ying, L. Q., Firdaus, R. N., Abdullah, N., Mailah N. F., Wakiwaka, H., 2011. Effect of inductive coil Sshape on sensing performance of linear displacement sensor using thin inductive coil and pattern guide. Sensors, 11, pp. 10522-10533. doi: 10.3390/s111110522
  22. Rouni, M.A., Shalev, B., Tsanidis, G., Markakis, I., Kraus, S., Rukenstein, P., Suchi, D., Shalev, O., Samaras, T., 2024. A validated methodological approach to prove the safety of clinical electromagnetic induction systems in magnetic hyperthermia. Cancers, 16, pp. 621. doi: 10.3390/cancers16030621
  23. Chia, D.K., Demuytere, J., Ernst, S., Salavati, H., Ceelen, W., 2023. Effects of hyperthermia and hyperthermic intraperitoneal chemoperfusion on the peritoneal and tumor immune contexture. Cancers, 15, pp. 4314. doi: 10.3390/cancers15174314
  24. Dev, K., Kadian, A., Manikandan, V., Pant, M., Mahapatro, A.K., Annapoorni, S., 2025. Annealing influence on the magnetic and thermal stability of FeNi3 nanoparticles for magnetic hyperthermia applications. Materials Today Communications, 43, pp. 111669. doi: 10.1016/j.mtcomm.2025.111669
  25. Singh, A., Kumar, P., Pathak, S., Jain, K., Garg, P., Pant, P., Mahapatro, A.K., Singh, R.K., Rajput, P., Kim, S.K., Maurya, K.K., Pant, R.P., 2024. Tailored nanoparticles for magnetic hyperthermia: Highly stable aqueous dispersion of Mn-substituted magnetite superparamagnetic nanoparticles by double surfactant coating for improved heating efficiency. Journal of Alloys and Compounds, 976, pp. 172999. doi: 10.1016/j.jallcom.2023.172999
  26. Salati, A., Ramazani, A., Kashi, M.A., 2020. Tuning hyperthermia properties of FeNiCo ternary alloy nanoparticles by morphological and magnetic characteristics. Journal of Magnetism and Magnetic Materials, 498, pp. 166172. doi: 10.1016/j.jmmm.2019.166172
  27. Litewka, J. D., Łazarczyk, A., Hałubiec, P., Szafrański, O., Karnas, K., Karewicz, A., 2019. Superparamagnetic Iron Oxide nanoparticles—current and prospective medical applications. Materials, 12, 617. doi: 10.3390/ma12040617
  28. Khan, D., Rahman, A.U., Kumam, P., Watthayu, W., Sitthithakerngkiet, K., Gala, A.M., 2022. Thermal analysis of different shape nanoparticles on hyperthermia therapy on breast cancer in a porous medium: A fractional model. Heliyon, 8, pp. 10170.
  29. Khan, D., Rahman, A.U., Kumam, P., Watthayu, W., 2022. A fractional analysis of hyperthermia therapy on breast cancer in a porous medium along with radiative microwave heating. Fractal and Fractional, 6, pp. 82. doi: 10.3390/fractalfract6020082
  30. Shokri, A. J., Tavakoli, M. H., Sabouri Dodaran A. A., Akhoundi Khezrabad, M. S., 2016. Numerical study of the influence of coil step on the induction heating process in three-dimensional. Journal of Applied Electromagnetics, 4, pp. 37-44.
  31. Rosensweig, R.E., 2002. Heating magnetic fluid with alternating magnetic field. Journal of Magnetism and Magnetic Materials, 252, pp. 370–374. doi: 10.1016/S0304-8853(02)00706-0
  32. Pennes, H.H., 1948. Analysis of tissue and arterial blood temperatures in the resting human forearm. Journal of Applied Physiology, 1(2), pp. 93-122. doi: 10.1152/jappl.1948.1.2.93
  33. Giustini, A.J., Ivkov, R., Hoopes, P.J., 2010. Magnetic nanoparticle hyperthermia in cancer treatment. Nano Life, 1(1), pp. 17-32.
  34. Dürr, S., Janko, C., Lyer, S., Tripal, P., Schwarz, M., Zaloga, J., Tietze, R., Alexiou, C., 2013. Magnetic nanoparticles for cancer therapy. Nanotechnology Reviews, 2, pp. 395–409.
  35. http://itis.swiss/virtualpopulation/tissue-properties/database/
  36. Rezaeian, M., Sedaghatkish, A., Soltani, M., 2019. Numerical modeling of high-intensity focused ultrasound-mediated intraperitoneal delivery of thermosensitive liposomal doxorubicin for cancer chemotherapy. Drug Delivery, 26, pp. 898–917. doi: 10.1080/10717544.2019.1660435
  37. Leeuwen, R.V., 2021. Development of an accurate temperature model for intraperitoneal hyperthermia. Master's Thesis, University of Twente.
  38. Liu, K., Wang, C., Cheng, P.J., 2013. Nonlinear behavior of thermal lagging in laser-irradiated layered tissue. Advances in Mechanical Engineering, 5, pp. 732575. doi: 10.1155/2013/732575
  39. Tang, Y., Jin, T., Flesch, R.C.C., Gao, Y., 2020. Improvement of solenoid magnetic field and its influence on therapeutic effect during magnetic hyperthermia. Journal of Physics D: Applied Physics, 53, pp. 235401. doi: 10.1088/1361-6463/ab87c5
  40. Rudnev, V., Loveless, D., Cook, R.L., 2017. Handbook of Induction Heating. 2nd ed. CRC Press, Boca Raton.
  41. Schooneveldt, G., Leijsen, Y.V., Balidemaj, E., Crezee, H., 2018. Clinical validation of a novel thermophysical bladder model designed to improve the accuracy of hyperthermia treatment planning in the pelvic region. International Journal of Hyperthermia, 35, pp. 383-397. doi: 10.1080/02656736.2018.1506164