Impact of Hall and Ion Slip Conditions in Two Layered Peristaltic Flow of Casson-Micropolar and Newtonian Liquid in an Inclined Channel

Document Type : Full Length Research Article

Authors

Department of Mathematics, VIT-AP University, Inavolu, Amaravath, 522237, India

Abstract

The study explores the impact of Hall and ion slip and velocity slip on the heat and mass transfer characteristics of MHD two-layered peristaltic motion of Casson-micropolar and Newtonian liquid in an inclined channel embedded in a porous space.  The governing flow equations have been linearised under the assumptions of long-wavelength approximation and low Reynolds number.  Closed-form expressions for pressure rise, wall frictional force, and mechanical efficiency over a complete wavelength cycle are derived. Results are presented graphically to analyse the impact of key parameters, such as the Hartmann number, porous parameter, Froude number, velocity slip, and inclination parameter, on velocity, temperature, concentration, mechanical efficiency, entropy generation, along with Nusselt number and Sherwood number.   Our findings reveal that as inclination, microrotation, and Casson parameters grow, there is a corresponding rise in liquid velocity.  The liquid temperature falls with the rise of the Froude number and Casson parameter.   Furthermore, when the chemical reaction parameter and Schmidt number grow, the concentration distribution reduces.  It is also observed that when the micropolar fluid and inclination parameters rise, both the pressure gradient and pressure rise increases.  Mechanical efficiency improves with the rise of the microrotation parameter, and entropy generation escalates with the rise in the inclination parameter.  A comparative analysis has been performed to confirm the validity of the obtained results.   These studies can be applied to physiological systems; specifically, esophageal peristalsis is governed by central and peripheral neural mechanisms, which involve extrinsic sympathetic or parasympathetic nerves and the myenteric plexus, respectively. Additionally, such investigations are relevant to biomedical engineering applications, including thermal therapy procedures. 

Keywords

Main Subjects


[1]
Latham, T.W., 1966. Fluid motions in a peristaltic pump., Ph.D. thesis, Massachusetts Institute of Technology.
[2]
Shapiro, A.H.,  Jaffrin, M.Y.,  and Weinberg, S. L.,  1969. Peristaltic pumping with long wavelengths at low reynolds number. Journal of fluid mechanics, 37(4), pp. 799–825
[3]
Srivastava, L, Srivastava, V., and Sinha, S., 1983. Peristaltic transport of a physiological fluid. Biorheology, 20(2), pp. 153–166.
[4]
Hayat, T.,  Wang, Y.,  Siddiqui,  A.,  Hutter, K.,  and Asghar, S.,  2002. Peristaltic transport of a third-order fluid in a circular cylindrical tube. Mathematical Models and Methods in Applied Sciences, 12 (12), pp. 1691–1706.
[5]
Mishra, M.,  and Ramachandra Rao, A.,  2003. Peristaltic transport of a newtonian fluid in an asymmetric channel. Zeitschrift für angewandte Mathematik und Physik ZAMP, 54, pp. 532–55
[6]
Radhakrishnamacharya, G., and  Srinivasulu, C., 2007. Influence of wall properties on peristaltic transport with heat transfer. Comptes Rendus Mecanique, 335(7), 36.
[7]
Srinivas, S.,  and Kothandapani, M., 2008. Peristaltic transport in an asymmetric channel with heat transfer—a note. International Communications in Heat and Mass Transfer, 35 (4), pp. 514–522.
[8]
Pandey, S., and Chaube, M.K., 2010. Peristaltic transport of a visco-elastic fluid in a tube of non-uniform cross section. Mathematical and Computer Modelling, 52(3-4), pp. 501–514.
[9]
Srinivas, S.,  and Muthuraj, R.,  2010. Peristaltic transport of a jeffrey fluid under the effect of slip in an inclined asymmetric channel. International Journal of Applied Mechanics, 2(02), pp. 437–455.
[10]
Srinivas, S.,  and Muthuraj, R.,  2011. Effects of chemical reaction and space porosity on mhd mixed convective flow in a vertical asymmetric channel with peristalsis. Mathematical and Computer Modelling, 54(5-6), pp. 1213–1227.
[11]
Magesh, A.,  Pushparaj, V.,  Srinivas, S.,   and Tamizharasi, P., 2023. Numerical investigations of activation energy on the peristaltic transport of carreau nanofluid through a curved asymmetric channel. Physics of Fluids, 35(10).
[12]
Abbasi, A., Danish, S.,  Farooq, W.,  Khan, M.I., Akermi, M., and  Hejazi, H.A.,  2024. Peristaltic transport of viscoelastic fluid in curved ducts with ciliated walls. Physics of Fluids, 36(3).
[13]
Anasuya, J.B., and Srinivas, S., 2024. Pulsatile flow and peristaltic motion interaction of Walter’s B liquid. Proceedings of the Institution of Mechanical Engineers. Part E: Journal of Process Mechanical Engineering, 2024 Apr 12:09544089241242601.
[14]
Das, S., Barman, B., Jana, R.N., and Makinde, O.D., 2021. Hall and ion slip currents’ impact on electromagnetic blood flow conveying hybrid nanoparticles through an endoscope with peristaltic waves. BioNanoScience, 11(3), pp. 770-792.
[15]
Das, S., and Barman, B., 2022. Ramification of hall and ion-slip currents on electro-osmosis of ionic hybrid nanofluid in a peristaltic microchannel. BioNanoScience, 12(3), pp. 957-978.
[16]
Srinivas, S., Anasuya, J.B., and Merugu, V., 2025. Interaction of pulsatile and peristaltic flow of a particle-fluid suspension with thermal effects. International Communications in Heat and Mass Transfer, 163, 108728.
[17]
Shukla, J.B.,  Parihar, R.S.,  Rao, B.R.P., and Gupta, S.P.,  1980. Effects of peripheral-layer viscosity on peristaltic transport of a bio-fluid.  Journal of Fluid Mechanics, 97(2), pp. 225–237.
[18]
Srivastava, V.,  and Saxena, M., 1995.  A two-fluid model of non-newtonian blood flow induced by peristaltic waves. Rheologica Acta, 34, pp. 406–414.
[19]
Rao, A. R., and Usha, S.,  1995. Peristaltic transport of two immiscible viscous fluids in a circular tube. Journal of Fluid Mechanics, 298, pp. 271–285.
[20]
Misra, J.,  and Pandey, S., 2001. Peristaltic flow of a multilayered power-law fluid through a cylindrical tube. International Journal of Engineering Science, 39(4), pp. 387–402.
[21]
Kavitha, A.,  Reddy, R.H., Saravana, R., and   Sreenadh, S., 2017. Peristaltic transport of a jeffrey fluid in contact with a newtonian fluid in an inclined channel. Ain Shams Engineering Journal, 8(4) pp. 683–687.
[22]
Vajravelu, K.,  Sreenadh, S.,  and Saravana, R.,  2017. Influence of velocity slip and temperature jump conditions on the peristaltic flow of a jeffrey fluid in contact with a newtonian fluid. Applied Mathematics and Nonlinear Sciences, 2 (2), pp. 429–442.
[23]
Hussain, S.,  Ali, N., and  Ullah, K.,  2019. Peristaltic flow of phan-thien-tanner fluid: effects of peripheral layer and electro-osmotic force. Rheologica Acta, 58, pp. 603–618.
[24]
Ali, N.,  Hussain, S.,  Ullah, K., and   Bég, O.A., 2019. Mathematical modelling of two-fluid electroosmotic peristaltic pumping of an ellis fluid in an axisymmetric tube. The European Physical Journal Plus, 134(4), 141.
[25]
Sankranthi, V.K.,  and Akkiraju Naga Satya, S., 2021.  Influence of peristalsis on the convective flow of two immiscible fluids in a vertical channel. Heat Transfer, 50(5), pp. 4757–4774.
[26]
Rushi Kesava, A., and Srinivas, A., 2022. Exploration of peristaltic pumping of casson fluid flow through a porous peripheral layer in a channel. Nonlinear Engineering, 11(1), pp. 558– 567.
[27]
Sreenadh, S.,  Arunachalam, P., Sumalatha, B., 2021. Peristaltic flow of two-layered fluids in an elastic tube. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, pp. 1–12.
[28]
Kumar, A., and  Yadav, P.K.,  2023. Heat and mass transfer in peristaltic flow of mhd non-miscible micropolar and newtonian fluid through a porous saturated asymmetric channel. Waves in Random and Complex Media, pp. 1–45.
[29]
Jubair, S., Yang, J., Ali, B., Bin-Mohsin, B., and Abd El-Wahed Khalifa, H., 2025. Analyzing the impact of non-Newtonian nanofluid flow on pollutant discharge concentration in wastewater management using an artificial computing approach. Applied Water Science, 15, pp. 1-13.
[30]
Jubair, S., Ali, B., Rafique, K., Ahmad Ansari, M., Mahmood, Z., Kumar, A., Mukalazi, H., and Alqahtani, H., 2024. Couple-stress nanofluid flow comprised of titanium alloy subject to Hall current and Joule heating effects: Numerical investigation. AIP Advances, 14(11), 115101.
[31]
Mehmood, Z., Mehmood,  R., and Iqbal Z., 2017. Numerical investigation of micropolar casson fluid over a stretching sheet with internal heating. Communications in Theoretical Physics, 67(4), 443.
[32]
Iqbal, Z., Mehmood, R., and Azhar, E.,  Mehmood, Z., 2017. Impact of inclined magnetic field on micropolar casson fluid using keller box algorithm. The European Physical Journal Plus, 132, pp. 1–13.
[33]
Chun, O., Raja, M.A.Z., Naz, S., Ahmad, I.,   Akhtar, R.,  Ali, Y.,  and Shoaib, M.,  2020. Dynamics of inclined magnetic field effects on micropolar casson fluid with lobatto iiia numerical solver. AIP Advances, 10(6).
[34]
Hazarika, S.,  and Ahmed, S.,  2020. Steady magnetohydrodynamic micropolar casson fluid of brownian motion over a solid sphere with thermophoretic and buoyancy forces: numerical analysis. Journal of Nanofluids, 9(4), pp. 336–345.
[35]
El-Dabe, N.T., Moatimid, G.M., Elshekhipy, A.-E. A., and Aballah, N.F., 2020. Numerical simulation of the motion of a micropolar casson fluid through a porous medium over a stretching surface. Thermal Science, 24(2 Part B), pp. 1285–1297.
[36]
Abbas, Z.,  and Rafiq, M., 2022. Numerical simulation of thermal transportation with viscous dissipation for a peristaltic mechanism of micropolar-casson fluid. Arabian Journal for Science and Engineering, 47(7), pp. 8709–8720.
[37]
Upadhya, S.M., Raju, S.V.S.R., Raju, C.S.K.,  Shah, N.A., and Chung, J.D., 2022. Importance of entropy generation on casson, micropolar and hybrid magneto-nanofluids in a suspension of cross diffusion. Chinese Journal of Physics, 77, pp. 1080–1101.
[38]
Abbas, N., Shatanawi, W., and Shatnawi, T.A. 2024. Thermodynamic properties of casson-sutterbymicropolar fluid flow over exponential stretching curved sheet with impact of mhd and heat generation. Case Studies in Thermal Engineering, 55, 104123.
[39]
Sharma, V., Chandrawat, R.K., and Kumar D., 2024.  Numerical investigation of unsteady mhd immiscible casson micropolar and jeffery fluid in a horizontal channel with heat transfer using mcb-dqm approach. Numerical Heat Transfer, Part B: Fundamentals, pp. 1–35.
[40]
Vaidehi, P., and Sasikumar,  J., 2024. Significance of micro-rotation on buoyancy driven oscillatory flow of micropolar-casson fluid through tapered wavy channels: A numerical approach. International Journal of Applied and Computational Mathematics, 10(3) pp. 1–26.
[41]
Imran, N., Javed, M., Sohail, M., Thounthong, P., Nabwey, H.A., and Tlili, I., 2020. Utilization of hall current and ions slip effects for the dynamic simulation of peristalsis in a compliant channel. Alexandria Engineering Journal, 59(5), pp. 3609-3622.  
[42]
Das, S., Barman, and Jana, R., 2021. Hall and ion-slip currents’ role in transportation dynamics of ionic Casson hybrid nano-liquid in a microchannel via electroosmosis and peristalsis. Korea-Australia Rheology Journal, 33, pp. 367-391.
[43]
Krishna, M.V., and Chamkha, A.J., 2019. Hall and ion slip effects on MHD rotating boundary layer flow of nanofluid past an infinite vertical plate embedded in a porous medium. Results in Physics, 15. 102652.
[44]
Das, S., Barman, B., and Jana R.,  2021. Influence of hall and ion-slip currents on peristaltic transport of magneto-nanofluid in an asymmetric channel. BioNanoScience, 11, pp. 720–738
[45]
Bejan, A., 1996. Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes. Journal of Applied Physics, 79(3), pp. 1191–1218.