[1] Sharma, P., Ramesh, K., Parameshwaran, R. and Deshmukh S. S., 2022. Thermal conductivity prediction of titania-water nanofluid: A case study using different machine learning algorithms. Case Studies in Thermal Engineering, 30, p.101658.
[2] Onyiriuka, E., 2023. Modelling the thermal conductivity of nanofluids using a novel model of models approach. Journal of Thermal Analysis and Calorimetry, 148(23), pp. 13569–13585.
[3] Ali, A., Nawal N., Abhishek K., Suhaib U.I., Patrick E. Phelan, M.A., Rizwan N., and Yuying Y., 2024. Application of machine learning algorithms in oredicting rheological behavior of BN-diamond/thermal oil hybrid nanofluids. Fluids, 9(1), p.20.
[4] Hamid, K.A., Azmi, W.H., Mamat, R., Usri, N.A., and Najafi, G., 2015. Investigation of Al₂O₃ nanofluid viscosity for different water/EG mixture based. Energy Procedia, 79, pp.354-359.
[5] Syam Sundar, L., Venkata Ramana, E., Singh, M.K., and Sousa, A.C.M., 2014. Thermal conductivity and viscosity of stabilized ethylene glycol and water mixture Al₂O₃ nanofluids: An experimental study. International Communications in Heat and Mass Transfer, 56, pp. 86–95.
[6] Chiam, H.W., Azmi, W.H., Usri, N.A., Mamat, R., and Adam, N.M., 2017. Thermal conductivity and viscosity of Al₂O₃ nanofluids for different base ratios of water and ethylene glycol mixture. Experimental Thermal and Fluid Science, 81, pp. 420–429.
[7] Pastoriza-Gallego, M.J., Lugo, L., Legido, J.L., and Piñeiro, M.M., 2011. Thermal conductivity and viscosity measurements of ethylene glycol-based Al₂O₃ nanofluids. Nanoscale Research Letters, 6(1), 221.
[8] Sawicka, Dorota, Janusz T. Cieśliński, and Slawomir Smolen. 2020. A comparison of empirical correlations of viscosity and thermal conductivity of water-ethylene glycol-Al2O3 nanofluids. Nanomaterials, 10(8), 1487.
[9] Yashawantha, K.M., and Vinod, A.V., 2021. ANN modelling and experimental investigation on effective thermal conductivity of ethylene glycol:water nanofluids. Journal of Thermal Analysis and Calorimetry, 145(2), pp. 609–630.
[10] Lim, S.K., Azmi, W.H., and Yusoff, A.R., 2016. Investigation of thermal conductivity and viscosity of Al₂O₃/water–ethylene glycol mixture nanocoolant for cooling channel of hot-press forming die application. International Communications in Heat and Mass Transfer, 78, pp. 182–189.
[11] Hemmat Esfe, M., Karimipour, A., Akbari, M., Safaei, M.R., Dahari, M., and Yan, W.M., 2015. Prediction of thermal conductivity of Mg(OH)₂–EG using MLP ANN and empirical correlation. International Communications in Heat and Mass Transfer, 67, pp. 46–50.
[12] Sadeghzadeh, M., Maddah, H., Ahmadi, M.H., Khadang, A., Ghazvini, M., Mosavi, A., and Nabipour, N., 2020. Prediction of thermo-physical properties of TiO2-Al2O3/water nanoparticles by using artificial neural network. Nanomaterials, 10(4), 697.
[13] Shateri, M., Sobhanigavgani, Z., Alinasab, A., Varamesh, A., Hemmati-Sarapardeh, A., Mosavi, A., and Shahab S., 2020. Comparative analysis of machine learning models for nanofluids viscosity assessment. Nanomaterials, 10(9), 1767.
[14] Bakthavatchalam, B., Shaik, N.B., and Hussain, P.B., 2020. An artificial intelligence approach to predict the thermophysical properties of MWCNT nanofluids. Processes, 8(6).
[15] Mukherjee, S., Mishra, P.C., Parashar, S.K.S., and Chaudhuri, P., 2016. Role of temperature on thermal conductivity of nanofluids: A brief literature review. Heat and Mass Transfer, 52(11), pp. 2575–2585.
[16] Ali, F.M., Yunus, W.M.M., Moksin, M.M.M., and Talib, Z.A., 2010. Effect of volume fraction on thermal conductivity and thermal diffusivity of nanofluids. Review of Scientific Instruments, 81(7).
[17] Yousefi, T., Heidari, M., Aloueyan, A.R., and Shahinian, H., 2012. Effect of Al₂O₃ nanofluids on thermal performance of a sintered heat pipe. International Conference on Thermal Engineering: Theory and Applications, 8(28), pp. 1442–1457.
[18] Hemmat Esfe, M., Karimipour, A., Yan, W.M., Akbari, M., Safaei, M.R., and Dahari, M., 2015. Experimental study on thermal conductivity of ethylene glycol-based nanofluids containing Al₂O₃ nanoparticles. International Journal of Heat and Mass Transfer, 88, pp. 728–734.
[19] Azmi, W.H., Usri, N.A., Mamat, R., Sharma, K.V., and Noor, M.M., 2017. Force convection heat transfer of Al2O3 nanofluids for different based ratio of water: Ethylene glycol mixture. Applied Thermal Engineering, 112, pp. 707-719.
[20] Kanti, P.K., Sharma, K.V., Said, Z., and Gupta, M., 2021. Experimental investigation on thermo-hydraulic performance of water-based fly ash–Cu hybrid nanofluid flow in a pipe. International Communications in Heat and Mass Transfer, 124, 105238.
[21] Kazem, H.A., Yousif, J.H., Chaichan, M.T., Al-Waeli, A.H.A., and Sopian, K., 2022. Long-term power forecasting using FRNN and PCA models for solar PV generation. Heliyon, 8(1), e08803.
[22] Al-Waeli, A.H.A., Kazem, H.A., Yousif, J.H., Chaichan, M.T., and Sopian, K., 2020. Mathematical and neural network modeling for nanofluid–nano PCM photovoltaic thermal systems performance. Renewable Energy, 145, pp. 963–980.
[23] Topal, H.İ., Erdoğan, B., Koçar, O., Onur, T.Ö., and Öztop, H.F., 2024. Dynamic viscosity prediction of nanofluids using ANN and GA. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46(7), 429.
[24] Erdogan, B., Kocar, O., and Topal, H.I., 2023. Measurement of the dynamic viscosity of water-based nanofluids containing Al₂O₃, TiO₂, and ZnO using ANN. Scientia Iranica. doi: 10.24200/sci.2023.63001.8163
[25] Mukherjee, S., Mishra, P.C., Ali, N., Aljuwayhel, N.F., Ebrahim, S.A., & Chaudhuri, P., 2022. Thermo-physical properties and heat transfer potential of silica–ethylene glycol mono nanofluid: Experiments and MLP modelling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 648, 129412.
[26] Gonçalves, I., Souza, R., Coutinho, G., Miranda, J., Moita, A., Pereira, J.E., Moreira, A., and Lima, R. 2021. Thermal conductivity of nanofluids: A review on prediction models, controversies and challenges. Applied Sciences, 11(6), 2525.
[27] Moolya, S., Satheesh, A., Rajan, D., & Moolya, R., 2022. Magnetohydrodynamics and aspect ratio effects on double diffusive mixed convection and their prediction: Linear regression model. Journal of Heat and Mass Transfer Research, 9(2), pp. 169–188.
[28] Yasin, N.J., Jehhef, K.A., and Mohsen, Z.A., 2019. Assessment of the effect of nanofluid on turbulent heat transfer and pressure drop in bend finned tube. IOP Conference Series: Materials Science and Engineering, 518(3).
[29] Srinivasan, P.M., Dharmakkan, N., Vishnu, M.D.S., Prasath, H., and Gogul, R., 2021. Thermal conductivity analysis of Al₂O₃/water–ethylene glycol nanofluid using factorial DOE in a natural convection setup. Hemijska Industrija, 75(6), pp. 341–352.