[1] J. Zhou, Y. Zhang, J.K. Chen, Non-Fourier heat conduction effect on laser induced thermal damage in biological tissues, Heat Transfer, A 54 (1), 65-70, (2008).
[2] J.Y. Lin, The non-Fourier effect on the fin performance under periodic thermal conditions, Appl. Math, Model. 22, 629–640, (1998).
[3] D.W. Tang, N. Araki, Non-Fourier heat conduction behavior in finite mediums under pulse surface heating, Mater. Sci. Eng, A 292, 173–178, (2000).
[4] J.R. Ho, C.P. Kuo, W.S. Jiaung, C.J. Twu, Lattice Boltzmann scheme for hyperbolic heat conduction, Numer. Heat Transfer, B 41, 591–607, (2002).
[5] S.C. Mishra, A. Lankadasu, K. Beronov, Application of the lattice Boltzmann method for solving the energy equation of a 2-D transient conduction radiation problem, Int. J. Heat Mass Transfer, 48, 3648–3659, (2005).
[6] S.C. Mishra, H.K. Roy, Solving transient conduction-radiation problems using the lattice Boltzmann method and the finite volume method, J. Compute. Phys. 233, 89–107, (2007).
[7] M. H. Rahimian, I. Rahbari, F. Mortazavi, High order numerical simulation of non-Fourier heat conduction: An application of numerical Laplace transform inversion, International Journal of Heat and Mass Transfer, vol. 51, 51–58, (2014).
[8] W. Dreyer, S. Qamar, Kinetic flux-vector splitting schemes for the hyperbolic heat conduction, J. Comput. Phys. 198 (2), (2004).
[9] H. Chen, J. Lin, Numerical analysis for hyperbolic heat conduction, Int. J. Heat Mass Transfer 36 (11), 2891–2898, (1993).
[10] J.I. Frankel, B. Vick, M.N. Özisik, General formulation and analysis of hyperbolic heat conduction in composite media, Int. J. Heat Mass Transfer 30, 1293–1305, (1987).
[11] B. Abdel-Hamid, Modelling non-Fourier heat conduction with periodic thermal oscillation using the finite integral transform, Appl. Math, Model 23, 899–914, (1999).
[12] T.M. Chen, C.C. Chen, Numerical solution for the hyperbolic heat conduction problems in the radial–spherical coordinate system using a hybrid Green’s function method, Int. J. Therm. Sci. 49, 1193–1196, (2010).
[13] X. Lu, P. Tervola, M. Viljanen, Transient analytical solution to heat conduction in composite circular cylinder, Int. J. Heat Mass Transfer, 49, 341–348, (2006).
[14] G.E. Cossali, Periodic heat conduction in a solid homogeneous finite cylinder, Int. J. Therm. Sci. 48, 722–732, (2009).
[15] A. Moosaie, Axsymmetric non-Fourier temperature field in a hollow sphere, Arch. Appl. Mech. 79, 679–694, (2009).
[16] H. Ahmadikia and M. Rismanian, Analytical solution of non-Fourier heat conduction problem on a fin under periodic boundary conditions, Journal of Mechanical Science and Technology, vol. 25 (11) 2919-2926, (2011).
[17] R. Siegel, J. Howell, Thermal Radiation heat Transfer, Taylor & Francis: New York, (2002).
[18] C. Mishra, H. Sahai, Analyses of non-Fourier heat conduction in 1-D cylindrical ans spherical geometry- An application of the lattice Boltzmann method, International Journal of Heat and Mass Transfer, 55, 7015-7023, (2012).
[19] Q. Zou, S. Hou, G. D. Doolen, Analytical solutions of the lattice Boltzmann BGK model, Journal of Statistical Physics, vol(81), 319–334, (1995).
[20] P. Lallemand, L. S. Luo, heory of the lattice Boltzmann method-acoustic and thermal properties in two and three dimensions, Physical Review, E68, (036706), 1–25, (2003).
[21] T. M. Chen, C. C. Chen, Numerical solution for the hyperbolic heat conduction problems in the radial-spherical coordinate system using a hybrid Green’s function method, International Journal of Thermal Sciences, (2010).
[22] C. C. Wang, Direct and inverse solutions with non-Fourier effect on the irregular shape, International Journal of Heat and Mass Transfer, vol (53), (13-14), 2685–2693, (2010).
[23] C. Mishra, B. Mondal, T. Kush, B. Sima Rama Krishna, Solving transient heat conduction problems on uniform and non-uniform lattices using the lattice Boltzmann method, International Communications in Heat and Mass Transfer, vol(36), 322–328, (2009).