Three-dimensional numerical simulation of temperature and flow fields in a Czochralski growth of germanium

Document Type : Full Lenght Research Article

Authors

Physics Department, Bu-Ali Sina University

Abstract

For a Czochralski growth of Ge crystal, thermal fields have been analysed numerically using the three-dimensional finite volume method (FLUENT package). The arrangement used in a real Czochralski crystal growth lab included a graphite crucible, heat shield, heating device, thermal insulation and chamber including two gas outlets. We have considered two cases for calculations, which are configuration containing (a) only gas and (b) melt and gas, related to initial stages of the growth process (seeding process). It has been assumed that the growth system is in steady state, fluids are incompressible Newtonian fluids and the flow is laminar. It was shown that the thermal field in the growth setup is completely three-dimensional. Especially, the temperature field at the melt free surface has not a uniform radial distribution due to the three-dimensional orientation of Argon flow above it.

Keywords

Main Subjects


[1]   N. Kobayashi, Computational simulation of the melt flow during Czochralski growth, J. Crystal Growth, 43, 357-363 (1978).
 
[2]  N. Kobayashi, Hydrodynamics in Czochralski growth-computer analysis and experiments, J. Crystal Growth,  52, 425-434 (1981).
 
[3]    T. Tsukada, N. Imaishi and M. Hotawa, Theoretical study of the flow and temperature fields in CZ single crystal growth, J. Chem. Eng. Jpn,  21, 184-191 (1988).
 
[4]   J.J. Derby, L. J. Atherton and P. M. Gresho, An integrated process model for the growth of oxide crystals by the Czochralski method, J. Crystal Growth,  97, 792-826 (1989).
 
[5]   J.J. Derby and Q. Xiao, The role of internal radiation and melt convection in Czochralski oxide growth: deep interfaces, interface inversion, and spiraling, J. Crystal Growth, 113, 575-586 (1991).  
 
[6]    J.J. Derby and Q. Xiao, Heat transfer and interface inversion during the Czochralski growth of yttrium aluminium garnet and gadolinium gallium garnet, J. Crystal Growth,  139, 147-157 (1994).
 
[7]   T. Tsukada, N. Imaishi and M. Hozawa, Global analysis of heat transfer in CZ crystal growth of oxide, J. Chem. Eng. Jpn., 27, 25-31 (1994).
 
[8]   J. Järvinen, R. Nieminen and T. Tiihonen, Time-dependent simulation of Czochralski silicon crystal growth, J. Cryst Growth, 180, 468-476 (1997).
[9]    E. Dornberger, E. Tomzig, A. Seidl, S. Schmitt, H.J. Leister, C. Schmitt and G. Muller, Thermal simulation of the Czochralski silicon growth process by three different models and comparison with experimental results, J. Crystal Growth, 180, 461-467 (1997).
 
[10]  G. Muller, A. Muhe, R. Backofen, E. Tomzig and W. Ammon, Study of oxygen transport in Czochralski growth of silicon, Microelectronic Engineering, 45, 135-147 (1999).
 
[11]   C.J. Jing, N. Imaishi, S. Yasuhiro and Y. Miyazawa, Three dimensional numerical simulation of spoke pattern in oxide melt, J. Crystal Growth, 200, 204-212 (1999).
 
[12] C.J. Jing, N. Imaishi, T. Sato and Y. Miyazawa, Three-dimensional numerical simulation of oxide melt flow in Czochralski configuration, J. Crystal Growth, 216, 372–388 (2000).
 
[13]  A. Lipchin and R.A. Brown, Hybrid finite-volume/finite-element simulation of heat transfer and melt turbulence in Czochralski crystal growth of silicon, J. Cryst Growth,  216, 192-203 (2000).
 
[14]  Z. Galazka and H. Wilke, Influence of the Marangoni convection on the flow pattern in the melt during growth of Y3 Al5O12 single crystals by the Czochralski method, J. Crystal Growth, 216, 389–398 (2000).
[15]   K. Takano, Y. Shiraishi, J. Matsubara, T. Iida, N. Takase, N. Machida, M. Kuramoto and H. Yamagishi, Global simulation of the CZ silicon crystal growth up to 400 mm in diameter, J. Crystal Growth, 229, 26-30 (2001).
 
[16] S. Enger, O. Grabner, G. Muller, M. Breuer and F. Durst, Comparison of measurements and numerical simulations of melt convection in Czochralski crystal growth of silicon, J. Crystal Growth, 230, 135-142 (2001).
 
[17]   V.V. Kalaev, I.Y. Evstratov and Y.N. Makarov, Gas flow effect on global heat transport and melt convection in Czochralski silicon growth, J. Crystal Growth, 249, 87-99 (2003).
 
[18]   V.V. Kalaev, D.P. Lukanin and V.A. Zabelin, Prediction of bulk defects in CZ Si crystals using 3D unsteady calculations of melt convection, Materials Science in Semiconductor Processing, 5, 369-378 (2003).
 
[19]   N.G. Ivanov, A.B. Korsakov and E.M. Smirnov, Analysis of magnetic field effect on 3D melt flow in CZ Si growth, J. Crystal Growth, 250, 163-174 (2003).
 
[20]  A.J. Nowak, R. Biaecki, A. Fic and G. Wecel, Analysis of fluid flow and energy transport in Czochralski’s process, Computers and Fluids,  32, 85-95 (2003).
[21]  T. Wetzel, J. Virbulis, A. Muiznieks, W. von Ammon, E. Tomzig, G. Raming and M. Weber, Prediction of the growth interface shape in industrial 300 mm CZ Si crystal growth, J. Crystal Growth, 266, 34-39 (2004).
 
[22]   L. You Rong, R. Dengfang and P. Lan, Global simulation of silicon crystal Czochralski growth I.Characteristics of heat transfer and fluid flow, Chinese Journal of Materials Research, 18, 212-218 (2004).
[23]  L. Liu, T. Kitashima and K. Kakimoto, Global analysis of effects of magnetic field configuration on melt–crystal interface shape and melt flow in CZ-Si crystal growth, J. Crystal Growth, 275, e2135-e2139 (2005).
 
[24]  S. Shufang, Z. Qingli and S. Jing, Research Progress in Numerical Simulation for Crystal Growth by Czochralski Method, Journal of Synthetic Crystals, 34, 687-693 (2005).
 
[25]  J. Banerjee and K. Muralidhar, Simulation of transport processes during Czochralski growth of YAG crystals, J. Crystal Growth, 286, 350-364 (2006).
 
[26]  V.V. Kalaev, Combined effect of DC magnetic field and free surface stresses on the melt flow and crystallization front formation during 400 mm diameter Si Cz crystal growth, J. Crystal Growth, 303, 203-210 (2007).
 
[27] M.H. Tavakoli and H. Wilke, Numerical study of heat transport and fluid flow of melt and gas during the seeding process of sapphire Czochralski crystal growth, Crystal Growth Des., 7, 644-651 (2007).
 
[28] M.H. Tavakoli and H. Wilke, Numerical investigation of heat transport and fluid flow during the seeding process of oxide Czochralski crystal growth Part 1: non-rotating seed, Cryst. Res. Technol, 42, 544-557 (2007).
 
[29] M.H. Tavakoli and H. Wilke, Numerical investigation of heat transport and fluid flow during the seeding process of oxide Czochralski crystal growth Part 2: rotating seed, Cryst. Res. Technol, 42, 688-698 (2007).
 
[30] M.H. Tavakoli, S. Omid and E. Mohammadi-Manesh, Influence of active afterheater on the fluid dynamics and heat transfer during Czochralski growth of oxide single crystals, CrystEngComm, 13, 5088-5093 (2011).
 
[31]  A. Raufeisen, S. Jana, M. Breuer, T., Botsch and F. Durst, 3D computation of oxygen transport in Czochralski crystal growth of silicon considering evaporation, J. Crystal Growth, 303, 146-149 (2007).
 
[32] P. Gunjal, M. Kulkarni, P. Ramachandran, Melt flow simulations of Czochralski crystal growth process of silicon for large crystals, ECS Transactions, 3, 41-52 (2006).
 
[33]  M.H. Tavakoli, Numerical study of heat transport and fluid flow during different stages of sapphire Czochralski crystal growth, J. Cryst Growth, 310, 3107-3112 (2008).
[34]  O. Smirnova, N. Durnev, K. Shandrakova, E. Mizitov and V. Soklakov, Optimization of furnace design and growth parameters for Si Cz growth, using numerical simulation, J. Crystal Growth, 310, 2185-2191 (2008).
[35] I.C. Avetissov, E.A. Sukhanova, A.P. Sadovskii, V.A. Kostikov and E.V. Zharikov, Experimental and numerical modeling of Czochralski crystal growth under axial vibrational control of the melt, J. Crystal Growth, 312, 1429-1433 (2010).
 
[36]    F. Mokhtari, A. Bouabdallah, A. Merah, M. Zizi, S. Hanchi and A. lemany, Three-dimensional study of the pressure field and advantages of hemispherical crucible in silicon Czochralski crystal growth, Cryst. Res. Technol., 45, 573-582 (2010).
 
[37]  X. Cen, J. Zhan and Y.S. Li, Large eddy simulation of Marangoni convection in Czochralski crystal growth, Cryst. Res. Technol., 46, 14-22 (2011).
 
[38] W. Miller, C. Frank-Rotsch and P. Rudolph, Numerical studies of flow patterns during Czochralski growth of square-shaped Si crystals, J. Crystal Growth, 318, 244-248 (2011).
 
[39]  O. Asadi Noghabi, M. M'Hamdi and M. Jomaa, Effect of crystal and crucible rotations on the interface shape of Czochralski grown silicon single crystals, J. Crystal Growth, 318,  173-177, (2011).
 
[40]  J. Chaohua, Effect of crystal and crucible rotations on the interface shape of Czochralski grown silicon single crystals, J. Semiconductors, 34,063005-6, (2013).
 
[41]  M. Kirpo, Global simulation of the Czochralski silicon crystal growth in ANSYS FLUENT, J. Crystal Growth, 371, 60-69 (2013). 
[42]   A.B. Crowley, Czochralski Crystal Pulling, IMA J. Appl. Math., 30, 173-189 (1983).
[43]  F. Dupret, P. Nicodème, Y. Ryckmans, P. Wouters and M. J. Crochet, Global modelling of heat transfer in crystal growth furnaces, Int. J. Heat Mass Transfer, 33, 1849-1871 (1990).
[44]  N. Van den Bogaert and F. Dupret, J. Cryst. Growth, Dynamic global simulation of the Czochralski process, I. Principles of the method, 171, 65–76 (1997).
[45]  N. Van den Bogaert and F. Dupret, J. Cryst. Growth, Dynamic global simulation of the Czochralski process, II. Analysis of the growth of a germanium crystal, 171, 67–93 (1997).
[46]  S.V. Bykova, V.D. Golyshev, M.A. Gonik, V.B. Tsvetovsky, I.V. Frjazinov and M.P. Marchenko, J. Cryst. Growth, Features of mass transfer for the laminar melt flow along the interface, 237–239, 1886-1891 (2002).
[47]  S. Abbasoglu, Three-dimensional numerical simulation of crystal and crucible rotations during Czochralski growth of GexSi1−x single crystals, Turk. J. Elec. Eng. & Comp. Sci., 20, 1343-1358 (2012).
[48] M. Honarmandnia, M.H. Tavakolia and H. Sadeghi, CrystEngComm, Global simulation of an RF Czochralski furnace during different stages of germanium single crystal growth, 18, 3942–3948 (2016).
[49] M. Honarmandnia, M.H. Tavakolia and H. Sadeghi, CrystEngComm, Global simulation of an RF Czochralski furnace during different stages of germanium single crystal growth, part II: to investigate the effect of the crucible's relative position against the RF coil on the isotherms, flow fields and thermo-elastic stresses,  19, 576–583 (2017).
[50] www.ansys.com/Products/Fluids/ANSYS-Fluent
[51]  A. Raufeisen, M. Breuer, T. Botsch and A. Delgado, J. Cryst. Growth, Transient 3D simulation of Czochralski crystal growth considering diameter variations, 311 (2009) 695–697.
[52]  D.T.J. Hurle, Crystal Pulling from the Melt, Springer-Verlag (1993).
[53]  D.T.J. Hurle, Handbook of Crystal Growth. Vol 2, Elsevier (1994).