[1] G. Roy, C.T. Nguyen, P.R. Lajoie, Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids, Superlattices and Microstructures, 35, 497-511, (2004).
[2] S. Sundar, L. Singh, K. Manoj, Convective heat transfer and friction factor correlations of nanofluid in a tube and with inserts-A review, Renewable and Sustainable Energy Reviews, 20, 23-35, (2013).
[3] G. Pathipakka, P. Sivashanmugam, Heat transfer behaviour of nanofluids in a uniformly heated circular tube fitted with helical inserts in laminar flow, Superlattices and Microstructures, 47, 349-360, (2010).
[4] S.E.B. Maı̈ga, C.T. Nguyen, N. Galanis, G. Roy, Heat transfer behaviours of nanofluids in a uniformly heated tube, Superlattices and Microstructures, 35, 543-557, (2004).
[5] K.H. Solangi, S.N. Kazi, M.R. Luhur, A. Amiri, R. Sadi, M.N.M. Zubir, S. Gharehkhani, K.H. Teng, A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids, Energy, 89, 1065-1086, (2015).
[6] S.M. Vanaki, P. Ganesan, H.A. Mohammed, Numerical study of convective heat transfer of nanofluids-A review, Renewable and Sustainable Energy Reviews, 54, 1212-1239, (2016).
[7] W. Zhong, A. Yu, X. Liu, Z. Tong, H. Zhang, DEM/CFD-DEM modelling of non-spherical particulate systems: theoretical developments and applications, Powder Technology, 302, 108-152, (2016).
[8] H. Xie, J. Wang, T. Xi, Y. Liu, Thermal conductivity of suspensions containing nanosized SiC particles, International Journal of Thermophysics, 23, 571–580, (2002).
[9] S.M.S. Murshed, K.C. Leong, C. Yang, Enhanced thermal conductivity of TiO2-water based nanofluids, International Journal of Thermal Sciences, 44, 367-373, (2005).
[10] E.V. Timofeeva, J.L. Routbort, D. Singh, Particle shape effects on thermophysical properties of alumina nanofluids, Journal Of Applied Physics, 106, 014304, (2009).
[11] M.M. Elias, M. Miqdad, I.M. Mahbubul, R. Saidur, M. Kamalisarvestani, M.R. Sohel, A. Hepbasli, N.A. Rahim, M.A. Amalina, Effect of nanoparticle shape on the heat transfer and thermodynamic performance of a shell and tube heat exchanger, International Communications in Heat and Mass Transfer, 44, 93-99, (2013).
[12] S.M. Vanaki, H.A. Mohammed, A. Abdollahi, M.A. Wahid, Effect of nanoparticle shapes on the heat transfer enhancement in a wavy channel with different phase shifts, Journal of Molecular Liquids, 196, 32-42 (2014).
[13] J.Z. Lin, Y. Xia, X. K. Ku, Flow and heat transfer characteristics of nanofluids containing rod-like particles in a turbulent pipe flow, International Journal of Heat and Mass Transfer, 93, 57-66, (2016).
[14] M. Bahiraei, R. Khosravi, S. Heshmatian, Assessment and optimization of hydrothermal characteristics for a non-Newtonian nanofluid flow within miniaturized concentric-tube heat exchanger considering designer’s viewpoint, Applied Thermal Engineering, 123, 266–276, (2017).
[15] P. Naphon, S. Wiriyasart, Experimental study on laminar pulsating flow and heat transfer of nanofluids in micro-fins tube with magnetic fields, International Journal of Heat and Mass Transfer, 118, 297–303, (2018).
[16] M. Bahiraei, N. Mazaheri, Application of a novel hybrid nanofluid containing graphene–platinum nanoparticles in a chaotic twisted geometry for utilization in miniature devices: Thermal and energy efficiency considerations, International Journal of Mechanical Sciences, 138–139, 337–349, (2018).
[17] D. Wen, Y. Ding, Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions, International Journal of Heat and Mass Transfer, 47, 5181-5188, (2004).
[18] M. Hatami, M. Jafaryar, J. Zhou, D. Jing, Investigation of engines radiator heat recovery using different shapes of nanoparticles in H2O/(CH2OH)2 based nanofluids, International Journal of Hydrogen Energy, 42, 10891-10900, (2017).
[19] R. Deepak Selvakumar, S. Dhinakaran, Forced convective heat transfer of nanofluids around a circular bluff body with the effects of slip velocity using a multi-phase mixture model, International Journal of Heat and Mass Transfer, 106, 816-828, (2017).
[20] A. Behzadmehr, M. Saffar-Avval, N. Galanis, Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two-phase approach, International Journal of Heat and Fluid Flow, 28, 211-219, (2007).
[21] A.R. Moghadassi, E. Ghomi, F. Parvizian, A numerical study of water based Al2O3 and Al2O3-Cu hybrid nanofluid effect on forced convective heat transfer, International Journal of Thermal Sciences, 92, 50-57, (2015).
[22] M. Manninen, V.Taivassalo, S. Kallio, On the mixture model for multiphase flow, VTT Publications, Technical Research Center of Finland, 288, (1996).
[23] L. Schiller, A. Naumann, A drag coefficient correlation, Z. Ver. Deutsch. Ing, 77, 318-320, (1935).
[24] A. Hussanan, M.Z. Salleh, I. Khan, S. Shafie, Convection heat transfer in micropolar nanofluids with oxide nanoparticles in water, kerosene and engine oil, Journal of Molecular Liquids, 229, 482-488, (2017).
[25] Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids, International Journal of Heat and Mass Transfer, 43, 3701-3707, (2000).
[26] R.K.Shah, Thermal entry length solutions for the circular tube and parallel plates, Proceedings of 3rd National Heat and Mass Transfer Conference, Indian Institute of Technology, Bombay, 1175, (1975).
[27] V. Gnielinski, New equations for heat and mass transfer in turbulent pipe and channel flow, International Chemical Engineering, 16, 359-368, (1976).
[28] F.M. White, Fluid Mechanics, eighth ed., McGraw-Hill Eduction, New York, (2016).
[29] B.S. Petukhov, Heat transfer and friction in turbulent pipe flow with variable physical properties, Advances in Heat Transfer, 6, 503-564, (1970).
D. K. Devendiran, V.A. Amirtham, A review on preparation, characterization, properties and applications of nanofluids, Renewable and Sustainable Energy Reviews, 60, 21-40, (2016).