[1] M. S. Liu, Dong, Q. W. Dong, Wang, D.-B. Wang, X. Ling, Numerical simulation of thermal stress in tube-sheet of heat transfer equipment, International journal of pressure vessels and piping, 76(10), 671-675, (1999).
[2] M. K. Apalak, R. Güneş, L. Fı́danci, Geometrically non-linear thermal stress analysis of an adhesively bonded tubular single lap joint, Finite elements in analysis and design, 39(3), 155-174, (2003).
[3] K. Mohammadi, Investigation of the effects of baffle orientation, baffle cut and fluid viscosity on shell side pressure drop and heat transfer coefficient in an e-type shell and tube heat exchanger, PhD thesis, University of Stuttgart: Stuttgart. (2011).
[4] H. Cho, G. Kardomateas, Thermal shock stresses due to heat convection at a bounding surface in a thick orthotropic cylindrical shell, International journal of solids and structures, 38(16), 2769-2788, (2001).
[5] W. Jin, Z. Gao, L. Liang, J. Zheng, K. Zhang, Comparison of two FEA models for calculating stresses in shell-and-tube heat exchanger, International journal of pressure vessels and piping, 81(6), 563-567, (2004).
[6] G. Xie, Q. Wang, M. Zeng, L. Luo, Heat transfer analysis for shell-and-tube heat exchangers with experimental data by artificial neural networks approach, Applied Thermal Engineering, 27(5), 1096-1104, (2007).
[7] V. Özceyhan, N. Altuntop, Heat transfer and thermal stress analysis in grooved tubes, Sadhana, 30(4), 537-553, (2005).
[8] M. Liu, Q. Dong, X. Gu, Stress analysis of Ω-tubesheet in waste heat boiler, Journal of Pressure Equipment and Systems, 4, 1-12, (2006).
[9] C. Qian, C. Duan, H. Yu, H. Duan, J. Tian, Reliability study of the hydraulically expanded tube-to-tubesheet joint, Journal of pressure vessel technology, 128(3), 408-413, (2006).
[10] H. Li, C. Qian, Q. Yuan, Cracking simulation of a tubesheet under different loadings, Theoretical and Applied Fracture Mechanics, 54(1), 27-36, (2010).
[11] V. Egwanwo, B. T. Lebele-Alawa, Prediction of the temperature distribution in a shell and tube heat exchanger using finite element model, Canadian Journal on Mechanical Science and Engineering, 3, 72-82, (2012).
[12] A. GopiChand, A. Sharma, G.V. Kumar, A. Srividya, Thermal analysis of shell and tube heat exchanger using mat lab and floefd software. International Journal of Reasearch In Engineering And Technology, 1(3), 276 - 281, (2012).
[13] T. Ma, Y. Chen, M. Zeng, Q. Wang, Stress analysis of internally finned bayonet tube in a high temperature heat exchanger, Applied Thermal Engineering, 43, 101-108, (2012).
[14] S. Xu, W. Wang, Numerical investigation on weld residual stresses in tube to tube sheet joint of a heat exchanger, International Journal of Pressure Vessels and Piping, 101, 37-44, (2013).
[15] M. Zeng, T. Ma, B. Sundén, M. B. Trabia, Q. Wang, Effect of lateral fin profiles on stress performance of internally finned tubes in a high temperature heat exchanger, Applied Thermal Engineering, 50(1), 886-895, (2013).
[16] B. Parikshit, K. Spandana, V. Krishna, T. Seetharam, K. Seetharamu, A simple method to calculate shell side fluid pressure drop in a shell and tube heat exchanger, International Journal of Heat and Mass Transfer, 84, 700-712, (2015).
[17] E. Pal, I. Kumar, J. B. Joshi, N. Maheshwari, CFD simulations of shell-side flow in a shell-and-tube type heat exchanger with and without baffles, Chemical Engineering Science, 143, 314-340, (2016).
[18] Y. Wang, X. Gu, Z. Jin, K. Wang, Characteristics of heat transfer for tube banks in crossflow and its relation with that in shell-and-tube heat exchangers, International Journal of Heat and Mass Transfer, 93, 584-594, (2016).
[19] M. S. Valipour, M. Biglari, E. Assareh, Thermal-economic optimization of shell and tube heat exchanger using a new multi-objective optimization method. Journal of Heat and Mass Transfer Research, 1, 67-78, (2016).
[20] Y. Lei, Y. Li, S. Jing, C. Song, Y. Lyu, F. Wang, Design and performance analysis of the novel shell-and-tube heat exchangers with louver baffles, Applied Thermal Engineering, 125, 870-879, (2017).
[21] M. Mellal, R. Benzeguir, D. Sahel, H. Ameur, Hydro-thermal shell-side performance evaluation of a shell and tube heat exchanger under different baffle arrangement and orientation, International Journal of Thermal Sciences, 121, 138-149, (2017).
[22] H. Uosofvand, A. A. Abbasian Arani, A. Arefmanesh, Effect of baffle orientation on shell-and-tube heat exchanger performance, Journal of Heat and Mass Transfer Research, 4, 83-90, (2017).
[23] Z. H. Ayub, D. Yang, T. S. Khan, E. Al-Hajri, A.H. Ayub, Performance characteristics of a novel shell and tube heat exchanger with shell side interstitial twisted tapes for viscous fluids application, Applied Thermal Engineering, 134, 248-255, (2018).
[24] E. Cao, Heat transfer in process engineering, McGraw Hill Professional, (2009).
[25] A. Aziz, M. Torabi, Thermal stresses in a hollow cylinder with convective boundary conditions on the inside and outside Surfaces, Journal of Thermal Stresses, 36(10), 1096-1111, (2013).
[26] J. H. Zhang, G. Z. Li, S. R. Li, Y. B. Ma, DQM-Based Thermal Stresses Analysis of a Functionally Graded Cylindrical Shell Under Thermal Shock, Journal of Thermal Stresses, 38(9), 959-982, (2015).
[27] P. D. Harvey, Engineering properties of steel, American Society for Metals Metals Park, Ohio, (1982).
[28] A. P. Fraas, Heat exchanger design, John Wiley & Sons, (1989).
[29] V. Gesellschaft, V. G. Chemieingenieurwesen, VDI Heat Atlas, Springer Science & Business Media, (2010).