Entropy generation in hydromagnetic and thermal boundary layer flow due to radial stretching sheet with Newtonian heating

Document Type : Full Lenght Research Article


1 University of Gour Banga, Malda 732 103, WB, India

2 Department of Applied Mathematics, Vidyasagar University, Midnapore 721 1102, India

3 Faculty of Military Science, Stellenbosch University, Private Bag X2, Saldanha 7395, South Africa


The entropy generation during hydromagnetic boundary layer flow of a viscous incompressible electrically conducting fluid due to radial stretching sheet with Newtonian heating in the presence of a transverse magnetic field and the thermal radiation has been analyzed. The governing equations are then solved numerically by using the fourth order Runge-Kutta method with shooting technique. The effects of the pertinent parameters on the fluid velocity, temperature, entropy generation number, Bejan number, as well as the shear stress at the surface of the sheet are discussed graphically and quantitatively. It is examined that because the presence of a magnetic field, the entropy generation in a thermal system can be controlled and reduced.


Main Subjects

  [1] Carragher, P., Crane, L.J.(1982). Heat transfer on a continuous stretching sheet. Z. Angew Math. Mech. 62, 564-565.
  [2] Wang, C.Y. (1990).  Liquid film on an unsteady stretching sheet. Q. Appl. Math. 48, 601-610.
  [3] Ariel, P. D. (2001). Axisymmetric flow of a second grade fluid past a stretching sheet. Int. J. Eng. Sci. 39(5), 529-553.
  [4] Chiam, T.C. (1994). Stagnation point flow towards a stretching plate. J. Phys. Soc. Jpn. 63, 2443-2444.
  [5] Liu, I. C. (2004). Flow and heat transfer of an electrically conducting fluid of second grade over a stretching sheet subject to a transverse magnetic field. Int. J. Heat Mass Transfer 47(19–20), 4427-4437.
  [6] Wang, C.Y . (2007). Natural convection on a vertical radially stretching sheet. Math. Anal. App. 332, 877- 883.
  [7] Ariel, P.D. (2007). Axisymmetric flow due to a stretching sheet with partial slip. Comput. Math. Appl.  54, 1169-1183.
  [8] Hayat, T., Sajid, M. (2007). Analytic solution for axisymmetric flow and heat transfer of a second grade fluid past a stretching sheet. Int. J. Heat Mass Transf  50, 75-84.
  [9] Sahoo, B., Sharma, H. G. (2007).  MHD flow and heat transfer from a continuous surface in a uniform free stream of a non-Newtonian fluid. Appl. Math. Mech.-Eng. Ed. 28(11),1467-1477.
 [10] Sajid, M., Ahmad, I., Hayat, T., Ayub, M. (2008). Series solution for unsteady axisymmetric flow and heat transfer over a radially stretching sheet. Commun. Nonlinear Sci. Numer. Simul. 13(10), 2193-2202.
 [11] Ariel, P.D. (2009). Extended homotopy perturbation method and computation of flow past a stretching sheet. Comput. Math. Appl. 58, 2402-2409.
 [12] Sahoo, B. (2009). Effects of partial slip on axisymmetric flow of an electrically conducting viscoelastic fluid past a stretching sheet. Cent. Eur. J. Phys., DOI; 10.2478/s11534-009-0105-x.
 [13] Sahoo, B. (2010).  Effects of slip, viscous dissipation and joule heating on the MHD flow and heat transfer of a second grade fluid past a radially stretching sheet. Appl. Math. Mech.- Eng. Ed. 31, 159-173.
 [14] Oztop, H. F., Al-Salem, K. A. (2012).  review on entropy generation in natural and mixed convection heat transfer for energy systems, Renewable Sustainable Energy Rev. 16 (1), 911-920.
 [15] Bejan, A. (1980). Second law analysis in heat transfer. Energy Int. J. 5, 721-732.
 [16] Bejan, A . (1994). Entropy Generation Through Heat and Fluid Flow, Wiley, Canada.
 [17] Odat, M. Q. A., Damseh, R. A., Nimr, M. A. A. (2004). Effect of magnetic field on entropy generation due to laminar forced convection past a horizontal flat plate. Entropy 4, 293-303.
 [18] Saouli, S., Aiboud-Saouli, S. (2004). Second law analysis of laminar falling liquid film along an inclined heated plate. Int. Comm. Heat Mass Transfer 31(6), 879-886.
 [19] Esfahani, J. A., Jafarian, M. M. (2005).  Entropy generation analysis of a flat plate boundary layer with various solution methods. Scientia Iranica 12, 233-240.
 [20] Makinde, O. D. (2006). Irreversibility analysis for gravitry driven non-Newtonian liquid film along an inclined isothermal plate. Physica Scripta 74, 642-645.
 [21] Arikoglu, A., Ozkol. I., Komurgoz, G. (2008).Effect of slip on entropy generation in a single rotating disk in MHD flow. Appl. Energy 85(12), 1225-1236.
 [22] Adboud, S., Saouli, S. (2010).Entropy analysis for viscoelastic magneto hydrodynamic flow over a stretching surface. Int. J. Non Linear Mech. 45 (5), 482-489.
 [23] Makinde, O. D. (2010).Thermodynamic second law analysis for a gravity driven variable viscosity liquid film along an inclined heated plate with convective cooling. J. Mech. Sci. Tech. 24 (4), 899-908.
 [24] Makinde, O. D. (2011).Second law analysis for variable viscosity hydromagnetic boundary layer flow with thermal radiation and Newtonian heating, Entropy 13, 1446-1464.
 [25] Makinde, O. D. (2012).Entropy analysis for MHD boundary layer flow and heat transfer over a flat plate with a convective surface boundary condition. Int. J. Exergy 10 (2), 142 - 154.
 [26] Butt, A.S., Munawar, S., Ali, A., Mehmood, A. (2012).Entropy generation in the Blasius flow under thermal radiation. Phys. Scr. 85 (3), 035008.
 [27] Rashidi, S., Abelman, N., Freidooni, M. (2013). Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid, Int. J. Heat and Mass Transfer 62, 515-525.
 [28] Butt, A.S., Ali, A. (2013). Effects of magnetic field on entropy generation in flow and heat transfer due to a radially stretching surface. Chin. Phys. Lett. 30(2), 024701.
 [29] Butt, A.S., Ali, A.( 2014). Entropy analysis of flow and heat transfer caused by a moving plate with thermal radiation. J. Mech. Sci. Tech. 28 (1), 343-348.
 [30] Butt, A.S., Ali, A . A computational study of entropy generation in magnetohydrodynamic flow and heat transfer over an unsteady stretching permeable sheet. Eur. Phys. J. Plus 129(3), 1-13.
 [31] Butt, A.S., Ali, A.( 2014). Entropy analysis of magnetohydrodynamic flow and heat transfer over a convectively heated radially stretching surface. J. Taiwan Institute of Chem. Eng. 45, 1197-1203.
 [32] Rosseland, S. (1931). Astrophysik und atom-theoretische Grundlagen, Springer-Verlag, Berlin.
 [33] Magyari, E., Pantokratoras, A. (2011). Note on the effect of thermal radiation in the linearized Rosseland approximation on the heat transfer characteristics of various boundary layer flows. Int. Commun. Heat and Mass Trans. 38, 554-556.
 [34] Woods, L. C. (1975). Thermodynamics of Fluid Systems. Oxford University Press, Oxford, UK.
 [35] Paoletti, S, Rispoli, F, Sciubba, E.( 1989). Calculation of exergetic losses in compact heat exchanger passages. ASME AES 10, 21-29.
 [36] Cimpean, D., Lungu, N., Pop, I. (2008). A problem of entropy generation in a channel filled with a porous medium. Creative Math. Inf. 17, 357-362.