[1] A. O. M., Inverse problems in identification and modeling of thermal processes: Russian contributions. International Journal of Numerical Methods for Heat & Fluid Flow 27, 711-728 (2017).
[2] J. Dutta, B. Kundu, A revised approach for an exact analytical solution for thermal response in biological tissues significant in therapeutic treatments. Journal of Thermal Biology 66, 33-48 (2017).
[3] J. Dutta, B. Kundu, Two-dimensional closed-form model for temperature in living tissues for hyperthermia treatments. Journal of Thermal Biology 71, 41-51 (2018).
[4] O. M. Alifanov, Inverse heat transfer problems. (Springer Science & Business Media, 2012).
[5] H. H. Pennes, Analysis of tissue and arterial blood temperatures in the resting human forearm. Journal of applied physiology 1, 93-122 (1948).
[6] P. Vernotte, Les paradoxes de la theorie continue de l′equation de la chaleur. compte r=Rendus 246, 3154-3155 (1958).
[7] C. Cattaneo, A form of heat conduction equation which eliminates the paradox of instantaneous propagation. Compute Rendus 247, 431-433 (1958).
[8] D. Y. Tzou, A Unified Field Approach for Heat Conduction From Macro- to Micro-Scales. Journal of Heat Transfer 117, 8-16 (1995).
[9] W.-Q. Lu, J. Liu, Y. Zeng, Simulation of the thermal wave propagation in biological tissues by the dual reciprocity boundary element method. Engineering Analysis with Boundary Elements 22, 167-174 (1998).
[10] A. Zolfaghari, M. Maerefat, A new simplified thermoregulatory bioheat model for evaluating thermal response of the human body to transient environments. Building and Environment 45, 2068-2076 (2010).
[11] H. Ahmadikia, R. Fazlali, A. Moradi, Analytical solution of the parabolic and hyperbolic heat transfer equations with constant and transient heat flux conditions on skin tissue. International communications in heat and mass transfer 39, 121-130 (2012).
[12] T.-C. Shih, P. Yuan, W.-L. Lin, H.-S. Kou, Analytical analysis of the Pennes bioheat transfer equation with sinusoidal heat flux condition on skin surface. Medical Engineering & Physics 29, 946-953 (2007).
[13] P. Yuan, H.-E. Liu, C.-W. Chen, H.-S. Kou, Temperature response in biological tissue by alternating heating and cooling modalities with sinusoidal temperature oscillation on the skin. International Communications in Heat and Mass Transfer 35, 1091-1096 (2008).
[14] M. M. Tung, M. Trujillo, J. A. López Molina, M. J. Rivera, E. J. Berjano, Modeling the heating of biological tissue based on the hyperbolic heat transfer equation. Mathematical and Computer Modelling 50, 665-672 (2009).
[15] R. M. Cotta, B. P. Cotta, C. P. Naveira-Cotta, G. Cotta-Pereira, Hybrid integral transforms analysis of the bioheat equation with variable properties. International Journal of Thermal Sciences 49, 1510-1516 (2010).
[16] H.-L. Lee, T.-H. Lai, W.-L. Chen, Y.-C. Yang, An inverse hyperbolic heat conduction problem in estimating surface heat flux of a living skin tissue. Applied Mathematical Modelling 37, 2630-2643 (2013).
[17] M. Mohammadiun, Time-Dependent Heat Flux Estimation in Multi-Layer Systems by Inverse Method. Journal of Thermophysics and Heat Transfer 30, 599-607 (2016).
[18] M. Mohammadiun, A. B. Rahimi, Estimation of time-dependent heat flux using temperature distribution at a point in a two layer system. Scientia Iranica 18, 966-973 (2011).
[19] M. Mohammadiun, A. B. Rahimi, I. Khazaee, Estimation of the time-dependent heat flux using the temperature distribution at a point by conjugate gradient method. International Journal of Thermal Sciences 50, 2443-2450 (2011).
[20] A. Jalali, Ayani, M. B., Baghban, M., Simultaneous estimation of controllable parameters in a living tissue during thermal therapy. Journal of thermal biology 45, 37-42 (2014).
[21] L. A. Kengne. E, Bioheat transfer problem for one-dimensional spherical biological tissues. Mathematical Bioscience 269, 1-9 (2015).
[22] M. B. A. M.Baghban, Source term prediction in a multilayer tissue during hyperthermia. ELSEVIER, Journal of Thermal Biology 52, 187-191 (2015).
[23] E. Y. Ng, and Sudharsan, N. M., An Improved Three-Dimensional Direct Numerical Modelling and Thermal Analysis of a Female Breast with Tumour. Journal of Engineering in Medicine, 215, 25-37 (2001).
[24] A. Amri, Saidane, A., and Pulko, S., Thermal Analysis of a Three-Dimensional Breast Model with Embedded Tumour using the Transmission Line Matrix (TLM) Method.
M. Shariatmadar tehrani/ JHMTR 7 (2020) 117- 129 129
Computers in Biology and Medicine 41, 76-86 (2011).
[25] N. M. Sudharsan, and Ng, E. Y., Parametric Optimization for Tumour Identification: Bioheat Equation using ANOVA and the Taguchi Method,. Journal of Engineering in Medicine 5, 505-512 (2000).
[26] M. P. Cetingul, and Herman, C., A Heat Transfer Model of Skin Tissue for the Detection of Lesions: Sensitivity Analysis. Physics in Medicine and Biology, 55, 5933-5951 (2010).
[27] L. Jiang, Zhan, W., and Loew, M. H., Modeling Static and Dynamic Thermography of the Human Breast Under Elastic Deformation. Physics in Medicine and Biology 56, 187-202 (2011).
[28] O. R. B. Ozisik M.N., Inverse Heat Transfer. Taylor & Francis, NewYork., (2000).
[29] Ozisik M.N., Heat Conduction. second ed. Wiley, New York., (1993).
[30] J. Daniel, The approximate minimisation of functionals Prentice-Hall. Inc., Englewood Cliffs, NJ, (1971).
[31] O. M. Alifano, Inverse Heat Transfer Problems. Springer-Verlag, New York., (1994).
[32] N. T. H. Jiang B.H., Prud’homme M., Control of the boundary heat flux during the heating process of a solid material. Int.Commun. Heat. Mass. 32, 728–738 (2005).