[1] ARKILIC, E. B., SCHMIDT, M. & BREUER, K. S.
1997. Gaseous slip ow in long
microchannels. Journal of
Microelectromechanical systems.
[2] EBERT, W. & SPARROW, E. M. 1965. Slip flow
in rectangular and annular ducts. Journal of
Basic Engineering, 87, 1018-1024.
[3] ZOHAR, Y., LEE, S. Y. K., LEE, W. Y., JIANG, L.
& TONG, P. 2002. Subsonic gas flow in a
straight and uniform microchannel. Journal
of fluid mechanics, 472, 125-151.
[4] SHEN, C. 2005. Use of the degenerated
Reynolds equation in solving the
microchannel flow problem. Physics of
Fluids, 17, 046101.
[5] MORINI, G. L., SPIGA, M. & TARTARINI, P.
2004. The rarefaction effect on the friction
factor of gas flow in microchannels.
Superlattices and microstructures, 35, 587-
599.
[6] DONGARI, N., AGRAWAL, A. & AGRAWAL, A.
2007. Analytical solution of gaseous slip flow
in long microchannels. International journal
of heat and mass transfer, 50, 3411-3421.
[7] AGRAWAL, A. 2012. A comprehensive
review on gas flow in microchannels.
International Journal of Micro-Nano Scale
Transport.
[8] DONGARI, N., SHARMA, A. & DURST, F. 2009.
Pressure-driven diffusive gas flows in microchannels:
from the Knudsen to the
continuum regimes. Microfluidics and
nanofluidics, 6, 679-692.
[9] DONGARI, N., DADZIE, S. K., ZHANG, Y. &
REESE, J. M. Isothermal micro‐channel gas
flow using a hydrodynamic model with
dissipative mass flux. AIP Conference
Proceedings, 2011. AIP, 718-723.
[10] DONGARI, N., DADZIE, S. K., ZHANG, Y. &
REESE, J. M. Isothermal micro‐channel gas
flow using a hydrodynamic model with
dissipative mass flux. AIP Conference
Proceedings, 2011. AIP, 718-723.
[11] VIMMR, J., KLÁŠTERKA, H. & HAJŽMAN, M.
2012. Analytical solution of gaseous slip flow
between two parallel plates described by the
M. Motamedian / JHMTR 7 (2020) 131-141 141
Oseen equation. Mathematics and Computers
in Simulation, 82, 1832-1840.
[12] DUAN, Z. & MUZYCHKA, Y. 2007a. Slip flow
in elliptic microchannels. International
Journal of Thermal Sciences, 46, 1104-1111.
[13] DUAN, Z. & MUZYCHKA, Y. 2007b. Slip flow
in non-circular microchannels. Microfluidics
and Nanofluidics, 3, 473-484.
[14] RASHIDI, M., GANJI, D. & SHAHMOHAMADI,
H. 2011. Variational iteration method for
two-dimensional steady slip flow in microchannels.
Archive of Applied Mechanics, 81,
1597-1605.
[15] DAS, S. K. & TAHMOURESI, F. 2016.
Analytical solution of fully developed
gaseous slip flow in elliptic microchannel.
Int. J. Adv. Appl. Math. and Mech. 3i, 1-15.
[16] KURKIN, E. I., SAMSONOV, V. N. & SHAKHOV,
V. G. 2017. Simulation of Rarefied Gas Flows
in Microchannels. Procedia engineering, 185,
160-167.
[17] DUAN, Z. & YOVANOVICH, M. Models for
gaseous slip flow in circular and noncircular
microchannels. ASME 2010 8th
International Conference on Nanochannels.
[18] IHLE, T. & KROLL, D. 2000. Thermal lattice-
Boltzmann method for non-ideal gases with
potential energy. Computer physics
communications, 129, 1-12.
[19] REDDY, K. V. & REDDY, M. G. 2014. Velocity
slip and joule heating effects on MHD
peristaltic flow in a porous medium. Int. J.
Adv. Appl. Math. Mech., 2, 126-138.
[20] HUANG, H. & LU, X.-Y. 2009. Simulation of
Gas Flow in Microtubes by Lattice
Boltzmann Method. International Journal of
Modern Physics C, 20, 1145-1153.
[21] TAHMOURESI, F. & DAS, S. K. 2014.
Analytical modeling of gaseous slip flow in
parabolic microchannels. Journal of Fluids
Engineering, 136, 071201.
[22] HUANG, H., LEE, T. & SHU, C. 2007. Lattice
Boltzmann method simulation gas slip flow
in long microtubes. International Journal of
Numerical Methods for Heat & Fluid Flow, 17,
587-607.
[23] YANG, Z. & GARIMELLA, S. 2009. Rarefied
gas flow in microtubes at different inletoutlet
pressure ratios. Physics of Fluids, 21,
052005.
[24] HONG, C., NAKAMURA, T., ASAKO, Y. &
UENO, I. 2016. Semi-local friction factor of
turbulent gas flow through rectangular
microchannels. International Journal of Heat
and Mass Transfer, 98, 643-649.
[25] LI, H. & HRNJAK, P. 2017. Effect of channel
geometry on flow reversal in microchannel
evaporators. International Journal of Heat
and Mass Transfer, 115, 1-10.
[26] LI, H. & HRNJAK, P. 2018. Effect of refrigerant
thermophysical properties on flow reversal
in microchannel evaporators. International
Journal of Heat and Mass Transfer, 117,
1135-1146.
[27]MONSIVAIS, I., LIZARDI, J. & MÉNDEZ, F.
2018. Conjugate thermal creep flow in a thin
microchannel. International Journal of
Thermal Sciences, 124, 227-239.
[28] DAS, S., ALI, A. & JANA, R. N. J. 2016. Slip flow
of an optically thin radiating non-Gray
couple stress fluid past a stretching sheet.
Journal of Heat and Mass Transfer Research,
3, 21-30.
[29] SAROJAMMA, G., SREELAKSHMI, K. &
VASUNDHARA, B. 2017. Unsteady boundary
layer flow of a Casson fluid past a wedge with
wall slip velocity. Journal of Heat and Mass
Transfer Research, 4, 91-102.
[30] RAHMATI, A. & NAJATI, F. 2018. Analytical
solution of pressure driven gas flow and heat
transfer in micro-Couette using the Burnett
equations. Journal of Heat and Mass Transfer
Research, 5, 87-94.
[31] BARRON, R. F., WANG, X., AMEEL, T. A. &
WARRINGTON, R. O. 1997. The Graetz
problem extended to slip-flow. International
Journal of Heat and Mass Transfer, 40, 1817-
1823.
[32]MAXWELL, J. C. 1879. VII. On stresses in
rarified gases arising from inequalities of
temperature. Philosophical Transactions of
the royal society of London, 170, 231-256.
[33]WANG, M. & LI, Z. 2007. An Enskog based
Monte Carlo method for high Knudsen
number non-ideal gas flows. Computers &
fluids, 36, 1291-1297.
[34] KANDLIKAR, S., GARIMELLA, S., LI, D.,
COLIN, S. & KING, M. R. 2005. Heat transfer
and fluid flow in minichannels and
microchannels, elsevier.