Forced convective heat transfer of non-Newtonian CMC-based CuO nanofluid in a tube

Document Type : Full Lenght Research Article


1 Department of Mechanical engineering, Shahrekord University

2 Esfahan Oil Refinery Company, Isfahan


In the present study, the thermal and rheological behavior of power-law non-Newtonian CMC-based CuO nanofluid in a tube is studied using ANSYS FLUENT software. Constant heat flux of 6000 W/m2 is subjected to the tube walls and the viscosity of nanofluid is assumed to be a function of shear rate, and temperature simultaneously. Two velocity profiles are considered as an inlet boundary condition: fully developed velocity and uniform velocity. Volume fractions of 0%-4%, and the Reynolds numbers of 600-1500 are considered in the simulations. For both velocity profiles, temperature and shear rate have considerable influence on the viscosity. Local heat transfer coefficient along the tube increases with the volume fraction, however, volume fractions less than 1.5% has an effect on local heat transfer slightly. It is revealed that as the Reynolds number enhances, local heat transfer and the average Nusselt number decrease. In conflict with previous investigations, the present results show that average Nusselt number is reduced by increasing the volume fraction of nanoparticles.


Main Subjects

[1] S. K. Das, S. U. S. Choi, W. Yu, T. Pradeep,
Nanofluid: Science and Technology, John
Wiley, New York, (2008).
[2] H. M. Elshehabey, Z. Raizah, H. F. Öztop, S. E.
Ahmed, MHD natural convective flow of
Fe3O4−H2O ferrofluids in an inclined partial
open complex-wavy-walls ringed enclosures
using non-linear Boussinesq approximation,
International Journal of Mechanical
Sciences, 170, 105352 (2019).
[3] M. Bayareh, A. Kianfar, A. Kasaeipour, Mixed
convection heat transfer of water-alumina
nanofluid in an inclined and baffled c-shaped
enclosure, Journal of Heat and Mass Transfer
Research, 5(2), 129-138 (2018).
[4] M. Tajik Jamal-Abad, M. Dehghan, S. Saedodin,
M. Valipour, A. Zamzamian, An experimental
investigation of rheological characteristics
of non- Newtonian nanofluids. Journal of
Heat and Mass Transfer Research, 1(1), 17-
23 (2014). doi: 10.22075/jhmtr.2014.150
[5] S. E. Ahmed, M. A. Mansour, A. M. Rashad, T.
Salah, MHD natural convection from two
heating modes in fined triangular enclosures
filled with porous media using nanofluids,
Journal of Thermal Analysis and
Calorimetry, 2019. doi:10.1007/s10973-
[6] S. E. Ahmed, Effect of fractional derivatives on
natural convection in a complex-wavy-wall
surrounded enclosure filled with porous
media using nanofluids, ZAMM - Journal of
Applied Mathematics and
Mechanics/Zeitschrift Für Angewandte
Mathematik Und Mechanik, 2019.
[7] M. Hojjat, S. Gh. Etemad, R. Bagheri, J. Thibault,
Rheological characteristics of non-
Newtonian nanofluids: Experimental
investigation, International
Communications in Heat and Mass Transfer,
38, 144–148 (2011).
[8] M. R. Eid, Effects of NP shapes on non-
Newtonian bio-nanofluid flow in
suction/blowing process with convective
condition: Sisko model, Journal of Non-
Equilibrium Thermodynamics,
2019. doi:10.1515/jnet-2019-0073
[9] A. Mariano, M. J. Pastoriza-Gallego, L. Lugo, A.
Camacho, S. Canzonieri, M. M. Pineiro,
Thermal conductivity, rheological behaviour
and density of non-Newtonian ethylene
162 M. Bayareh / JHMTR 7 (2020) 155-163
glycol-based SnO2 nanofluids, Fluid Phase Equilibria, 337, , 119– 124 (2013).
[10] P. Garg, J. L. Alvarado, C. Marsh, T. K. Carlson, D. A. Kessler, K. Annamalai, An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids, International Journal of Heat and Mass Transfer, 52, 5090–5101 (2009).
[11] M. Shirazi, A. Shateri, M. Bayareh, Numerical investigation of mixed convection heat transfer of a nanofluid in a circular enclosure with a rotating inner cylinder, Journal of Thermal Analysis and Calorimetry, 133(2), 1061–1073 (2018).
[12] M. Sepyani, A. Shateri, M. Bayareh, Investigating the mixed convection heat transfer of a nanofluid in a square chamber with a rotating blade, Journal of Thermal Analysis and Calorimetry, 135, 609-623 (2019).
[13] M .R. Eid, K. L. Mahny, A. Dar, Muhammad T, Numerical study for Carreau nanofluid flow over a convectively heated nonlinear stretching surface with chemically reactive species, Physica A: Statistical Mechanics and Its Applications, 123063 (2019). doi:10.1016/j.physa.2019.123063
[14] S. Lahmar, M. Kezzar, M. R. Eid, M. R. Sari, Heat transfer of squeezing unsteady nanofluid flow under the effects of an inclined magnetic field and variable thermal conductivity, Physica A: Statistical Mechanics and Its Applications, 2019. doi:10.1016/j.physa.2019.123138 .
[15] M. N. Labib, M. J. Nine, H. Afrianto, H. Chung, H. Jeong, Numerical investigation on effect of base fluids and hybrid nanofluid in forced convective heat transfer, International Journal of Thermal Sciences, 71, 163-171 (2013).
[16] A. Esmaeilnejad, H. Aminfar, M. Shafiee Neistanak, Numerical investigation of forced convection heat transfer through microchannels with non-Newtonian nanofluids, International Journal of Thermal Sciences, 75, 76-86 (2014).
[17] N. Boumaiza, M. Kezzar, M. R. Eid, I. Tabet, On numerical and analytical solutions for mixed convection Falkner-Skan flow of nanofluids with variable thermal conductivity, Waves in Random and Complex Media, 1–20 (2019). doi:10.1080/17455030.2019.1686550.
[18] A. F. Al-Hossainy, M. R. Eid, M. Sh. Zoromba, SQLM for external yield stress effect on 3D MHD nanofluid flow in a porous medium, Physica Scripta 94(10), 105208 (2019).
[19] M. Tajik, M. Dehghan, A. Zamzamian, Analysis of variance of nanofluid heat transfer data for forced convection in horizontal spirally coiled tubes. Journal of Heat and Mass Transfer Research, 2(2), 45-50 (2015). doi: 10.22075/jhmtr.2015.348
[20] S. ZeinaliHeris, S. Gh. Etemad, M. Nasr Esfahany, Convective heat transfer of a Cu/Water nanofluid flowing through a circular tube, Journal of Experimental Heat Transfer, 32, 342-351 (2009).
[21] M. Sanaie-Moghadam, M. Jahangiri, F. Hormozi, Determination of stationary region boundary in multiple reference frames method in a mixing system agitated by Helical Ribbon Impeller using CFD. Journal of Heat and Mass Transfer Research, 2(1), 31-37 (2015). doi: 10.22075/jhmtr.2015.337
[22] M. Keshavarz Moraveji, S. M. H. Haddad, M. Darabi, Modeling of forced convective heat transfer of a non-Newtonian nanofluid in the horizontal tube under constant heat flux with computational fluid dynamics, International Communications in Heat and Mass Transfer, 39, 995–999 (2012).
[23] M. A. Ahmed, M. Z. Yusoff, N. H. Shuaib, Effects of geometrical parameters on the flow and heat transfer characteristics in trapezoidal-corrugated channel using nanofluid, International Communications in Heat and Mass Transfer, 42, 69–74 (2013).
[24] F. Bazdidi-Tehrani, S. M. Khanmohamadi, S. I. Vasefi, Evaluation of turbulent forced convection of non-Newtonian aqueous solution of CMC/CuO nanofluid in a tube with twisted tape inserts, Advanced Powder Technology, 31(3), 1100-113 (2020). doi:10.1016/j.apt.2019.12.022
[25] R. Kamali, A. R. Binesh, Numerical investigation of heat transfer enhancement using carbon nanotube-based non-Newtonian nanofluids, International Communications in Heat and Mass Transfer, 37, 1153–1157 (2010).
[26] H. S. Chen, Y. L. Ding, C. Q. Tan, Rheological behavior of nanofluids. New J Phys, 9, 1–25 (2007).
[27] S. Hussain, M. Jamal, S. E. Ahmed, Hydrodynamic forces and heat transfer of nanofluid forced convection flow around a rotating cylinder using finite element method: The impact of nanoparticles, International Communications in Heat and Mass Transfer, 108, 104310 (2019). doi:10.1016/j.icheatmasstransfer.2019.104310
[28] S. E. Ahmed, Z. Z. Rashed, MHD natural convection in a heat generating porous medium-filled wavy enclosures using
M. Bayareh / JHMTR 7 (2020) 155- 163 163
Buongiorno's nanofluid model, Case Studies in Thermal Engineering, 14, 100430 (2019).
[29] R. Ramakrishnan, Structured and unstructured grid adaptation schemes for numerical modeling of field problems. Applied Numerical Mathematics, 14(1-3), 285–310 (1994). doi:10.1016/0168-9274(94)90030-2
[30] M. Bayareh, S. Dabiri, A. M. Ardekani, Interaction between two drops ascending in a linearly stratified fluid, European Journal of Mechanics-B/Fluids, 60, 127-136 (2016).
[31] A. Benchabane, K. Bekkour, Rheological properties of carboxymethyl cellulose (CMC) solutions. Colloid and Polymer Science, 286(10), 1173–1180 (2008). doi:10.1007/s00396-008-1882-2
[32] D. A. Siginer, D. D. Kee, R. P. Chhabra, Advances in flow and rheology of non-Newtonian fluids, 8th editionElsevier, Netherlands, (1999).