[1] S. K. Das, S. U. S. Choi, W. Yu, T. Pradeep,
Nanofluid: Science and Technology, John
Wiley, New York, (2008).
[2] H. M. Elshehabey, Z. Raizah, H. F. Öztop, S. E.
Ahmed, MHD natural convective flow of
Fe3O4−H2O ferrofluids in an inclined partial
open complex-wavy-walls ringed enclosures
using non-linear Boussinesq approximation,
International Journal of Mechanical
Sciences, 170, 105352 (2019).
[3] M. Bayareh, A. Kianfar, A. Kasaeipour, Mixed
convection heat transfer of water-alumina
nanofluid in an inclined and baffled c-shaped
enclosure, Journal of Heat and Mass Transfer
Research, 5(2), 129-138 (2018).
[4] M. Tajik Jamal-Abad, M. Dehghan, S. Saedodin,
M. Valipour, A. Zamzamian, An experimental
investigation of rheological characteristics
of non- Newtonian nanofluids. Journal of
Heat and Mass Transfer Research, 1(1), 17-
23 (2014). doi: 10.22075/jhmtr.2014.150
[5] S. E. Ahmed, M. A. Mansour, A. M. Rashad, T.
Salah, MHD natural convection from two
heating modes in fined triangular enclosures
filled with porous media using nanofluids,
Journal of Thermal Analysis and
Calorimetry, 2019. doi:10.1007/s10973-
019-08675-x
[6] S. E. Ahmed, Effect of fractional derivatives on
natural convection in a complex-wavy-wall
surrounded enclosure filled with porous
media using nanofluids, ZAMM - Journal of
Applied Mathematics and
Mechanics/Zeitschrift Für Angewandte
Mathematik Und Mechanik, 2019.
doi:10.1002/zamm.201800323
[7] M. Hojjat, S. Gh. Etemad, R. Bagheri, J. Thibault,
Rheological characteristics of non-
Newtonian nanofluids: Experimental
investigation, International
Communications in Heat and Mass Transfer,
38, 144–148 (2011).
[8] M. R. Eid, Effects of NP shapes on non-
Newtonian bio-nanofluid flow in
suction/blowing process with convective
condition: Sisko model, Journal of Non-
Equilibrium Thermodynamics,
2019. doi:10.1515/jnet-2019-0073
[9] A. Mariano, M. J. Pastoriza-Gallego, L. Lugo, A.
Camacho, S. Canzonieri, M. M. Pineiro,
Thermal conductivity, rheological behaviour
and density of non-Newtonian ethylene
162 M. Bayareh / JHMTR 7 (2020) 155-163
glycol-based SnO2 nanofluids, Fluid Phase Equilibria, 337, , 119– 124 (2013).
[10] P. Garg, J. L. Alvarado, C. Marsh, T. K. Carlson, D. A. Kessler, K. Annamalai, An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids, International Journal of Heat and Mass Transfer, 52, 5090–5101 (2009).
[11] M. Shirazi, A. Shateri, M. Bayareh, Numerical investigation of mixed convection heat transfer of a nanofluid in a circular enclosure with a rotating inner cylinder, Journal of Thermal Analysis and Calorimetry, 133(2), 1061–1073 (2018).
[12] M. Sepyani, A. Shateri, M. Bayareh, Investigating the mixed convection heat transfer of a nanofluid in a square chamber with a rotating blade, Journal of Thermal Analysis and Calorimetry, 135, 609-623 (2019).
[13] M .R. Eid, K. L. Mahny, A. Dar, Muhammad T, Numerical study for Carreau nanofluid flow over a convectively heated nonlinear stretching surface with chemically reactive species, Physica A: Statistical Mechanics and Its Applications, 123063 (2019). doi:10.1016/j.physa.2019.123063
[14] S. Lahmar, M. Kezzar, M. R. Eid, M. R. Sari, Heat transfer of squeezing unsteady nanofluid flow under the effects of an inclined magnetic field and variable thermal conductivity, Physica A: Statistical Mechanics and Its Applications, 2019. doi:10.1016/j.physa.2019.123138 .
[15] M. N. Labib, M. J. Nine, H. Afrianto, H. Chung, H. Jeong, Numerical investigation on effect of base fluids and hybrid nanofluid in forced convective heat transfer, International Journal of Thermal Sciences, 71, 163-171 (2013).
[16] A. Esmaeilnejad, H. Aminfar, M. Shafiee Neistanak, Numerical investigation of forced convection heat transfer through microchannels with non-Newtonian nanofluids, International Journal of Thermal Sciences, 75, 76-86 (2014).
[17] N. Boumaiza, M. Kezzar, M. R. Eid, I. Tabet, On numerical and analytical solutions for mixed convection Falkner-Skan flow of nanofluids with variable thermal conductivity, Waves in Random and Complex Media, 1–20 (2019). doi:10.1080/17455030.2019.1686550.
[18] A. F. Al-Hossainy, M. R. Eid, M. Sh. Zoromba, SQLM for external yield stress effect on 3D MHD nanofluid flow in a porous medium, Physica Scripta 94(10), 105208 (2019).
[19] M. Tajik, M. Dehghan, A. Zamzamian, Analysis of variance of nanofluid heat transfer data for forced convection in horizontal spirally coiled tubes. Journal of Heat and Mass Transfer Research, 2(2), 45-50 (2015). doi: 10.22075/jhmtr.2015.348
[20] S. ZeinaliHeris, S. Gh. Etemad, M. Nasr Esfahany, Convective heat transfer of a Cu/Water nanofluid flowing through a circular tube, Journal of Experimental Heat Transfer, 32, 342-351 (2009).
[21] M. Sanaie-Moghadam, M. Jahangiri, F. Hormozi, Determination of stationary region boundary in multiple reference frames method in a mixing system agitated by Helical Ribbon Impeller using CFD. Journal of Heat and Mass Transfer Research, 2(1), 31-37 (2015). doi: 10.22075/jhmtr.2015.337
[22] M. Keshavarz Moraveji, S. M. H. Haddad, M. Darabi, Modeling of forced convective heat transfer of a non-Newtonian nanofluid in the horizontal tube under constant heat flux with computational fluid dynamics, International Communications in Heat and Mass Transfer, 39, 995–999 (2012).
[23] M. A. Ahmed, M. Z. Yusoff, N. H. Shuaib, Effects of geometrical parameters on the flow and heat transfer characteristics in trapezoidal-corrugated channel using nanofluid, International Communications in Heat and Mass Transfer, 42, 69–74 (2013).
[24] F. Bazdidi-Tehrani, S. M. Khanmohamadi, S. I. Vasefi, Evaluation of turbulent forced convection of non-Newtonian aqueous solution of CMC/CuO nanofluid in a tube with twisted tape inserts, Advanced Powder Technology, 31(3), 1100-113 (2020). doi:10.1016/j.apt.2019.12.022
[25] R. Kamali, A. R. Binesh, Numerical investigation of heat transfer enhancement using carbon nanotube-based non-Newtonian nanofluids, International Communications in Heat and Mass Transfer, 37, 1153–1157 (2010).
[26] H. S. Chen, Y. L. Ding, C. Q. Tan, Rheological behavior of nanofluids. New J Phys, 9, 1–25 (2007).
[27] S. Hussain, M. Jamal, S. E. Ahmed, Hydrodynamic forces and heat transfer of nanofluid forced convection flow around a rotating cylinder using finite element method: The impact of nanoparticles, International Communications in Heat and Mass Transfer, 108, 104310 (2019). doi:10.1016/j.icheatmasstransfer.2019.104310
[28] S. E. Ahmed, Z. Z. Rashed, MHD natural convection in a heat generating porous medium-filled wavy enclosures using
M. Bayareh / JHMTR 7 (2020) 155- 163 163
Buongiorno's nanofluid model, Case Studies in Thermal Engineering, 14, 100430 (2019).
[29] R. Ramakrishnan, Structured and unstructured grid adaptation schemes for numerical modeling of field problems. Applied Numerical Mathematics, 14(1-3), 285–310 (1994). doi:10.1016/0168-9274(94)90030-2
[30] M. Bayareh, S. Dabiri, A. M. Ardekani, Interaction between two drops ascending in a linearly stratified fluid, European Journal of Mechanics-B/Fluids, 60, 127-136 (2016). http://dx.doi.org/10.1016/j.euromechflu.2016.07.002
[31] A. Benchabane, K. Bekkour, Rheological properties of carboxymethyl cellulose (CMC) solutions. Colloid and Polymer Science, 286(10), 1173–1180 (2008). doi:10.1007/s00396-008-1882-2
[32] D. A. Siginer, D. D. Kee, R. P. Chhabra, Advances in flow and rheology of non-Newtonian fluids, 8th editionElsevier, Netherlands, (1999).