[1] Das, S.K., Choi, S.U. and Patel, H.E., 2006. Heat transfer in nanofluids—a review. Heat transfer engineering, 27(10), pp.3-19.
[2] Wang, X.Q. and Mujumdar, A.S., 2008. A review on nanofluids-part I: theoretical and numerical investigations. Brazilian Journal of Chemical Engineering, 25(4), pp.613-630.
[3] Eastman, J.A., Choi, U.S., Li, S., Thompson, L.J. and Lee, S., 1996. Enhanced thermal conductivity through the development of nanofluids (No. ANL/MSD/CP-90462; CONF-961202-94). Argonne National Lab., IL (United States).
[4] Lee, S., Choi, S.S., Li, S.A. and Eastman, J.A., 1999. Measuring thermal conductivity of fluids containing oxide nanoparticles.
[5] Xuan, Y. and Roetzel, W., 2000. Conceptions for heat transfer correlation of nanofluids. International Journal of heat and Mass transfer, 43(19), pp.3701-3707.
[6] Wen, D. and Ding, Y., 2004. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. International journal of heat and mass transfer, 47(24), pp.5181-5188.
[7] Shah, R.K., 1975, December. Thermal entry length solutions for the circular tube and parallel plates. In Proceedings of 3rd national heat and mass transfer conference, 1, pp.11. Indian Institute of Technology Bombay.
[8] Noghrehabadi, A. and Pourrajab, R., 2016. Experimental investigation of forced convective heat transfer enhancement of γ-Al 2 O 3/water nanofluid in a tube. Journal of
84 R.Bahoosh / JHMTR 8 (2021) 71- 85
Mechanical Science and Technology, 30(2), pp.943-952.
[9] Hassanzadeh, R., Ozbek, A. and Bilgili, M., 2016. Analysis of alumina/water nanofluid in thermally developing region of a circular tube. Thermal Engineering, 63(12), pp.876-886.
[10] Nourgaliev, R.R., Dinh, T.N., Theofanous, T.G. and Joseph, D., 2003. The lattice Boltzmann equation method: theoretical interpretation, numerics and implications. International Journal of Multiphase Flow, 29(1), pp.117-169.
[11] Xuan, Y. and Yao, Z., 2005. Lattice Boltzmann model for nanofluids. Heat and mass transfer, 41(3), pp.199-205.
[12] Kefayati, G.R., Hosseinizadeh, S.F., Gorji, M. and Sajjadi, H., 2011. Lattice Boltzmann simulation of natural convection in tall enclosures using water/SiO2 nanofluid. International Communications in Heat and Mass Transfer, 38(6), pp.798-805.
[13] Javaherdeh, K. and Ashorynejad, H.R., 2014. Magnetic field effects on force convection flow of a nanofluid in a channel partially filled with porous media using Lattice Boltzmann Method. Advanced Powder Technology, 25(2), pp.666-675.
[14] Sidik, N.A.C. and Mamat, R., 2015. Recent progress on lattice Boltzmann simulation of nanofluids: A review. International Communications in Heat and Mass Transfer, 66, pp.11-22.
[15] Cheng, P., Gui, N., Yang, X., JiyuanTu and Jiang, S., 2018. Application of lattice Boltzmann methods for the multiphase fluid pipe flow on graphical processing unit. The Journal of Computational Multiphase Flows, 10(3), pp.109-118.
[16] Goodarzi, M., D’Orazio, A., Keshavarzi, A., Mousavi, S. and Karimipour, A., 2018. Develop the nano scale method of lattice Boltzmann to predict the fluid flow and heat transfer of air in the inclined lid driven cavity with a large heat source inside, Two case studies: Pure natural convection & mixed convection. Physica A: Statistical Mechanics and Its Applications, 509, pp.210-233.
[17] Nazari, M. and Kayhani, M.H., 2016. A Comparative Solution of Natural Convection in an Open Cavity using Different Boundary Conditions via Lattice Boltzmann Method. Journal of Heat and Mass Transfer Research, 3(2), pp.115-129.
[18] Bahoosh, R., Jafari, M. and Bahrainian, S.S., 2019. GDL construction effects on distribution of reactants and electrical current density in PEMFC. Journal of Heat and Mass Transfer Research, 6(2), pp.105-116. [19] Shomali, M. and Rahmati, A., 2020. Numerical analysis of gas flows in a microchannel using the Cascaded Lattice Boltzmann Method with varying Bosanquet parameter. Journal of Heat and Mass Transfer Research, 7(1), pp.25-38.
[20] Zhou, J.G., 2011. Axisymmetric lattice Boltzmann method revised. Physical review E, 84(3), p.036704.
[21] Zhou, J.G., 2008. Axisymmetric lattice Boltzmann method. Physical Review E, 78(3), p.036701.
[22] Guo, Z., Han, H., Shi, B. and Zheng, C., 2009. Theory of the lattice Boltzmann equation: lattice Boltzmann model for axisymmetric flows. Physical Review E, 79(4), p.046708.
[23] Li, Q., He, Y.L., Tang, G.H. and Tao, W.Q., 2010. Improved axisymmetric lattice Boltzmann scheme. Physical Review E, 81(5), p.056707.
[24] Li, Q., He, Y.L., Tang, G.H. and Tao, W.Q., 2009. Lattice Boltzmann model for axisymmetric thermal flows. Physical Review E, 80(3), p.037702.
[25] Chang, C., Liu, C.H. and Lin, C.A., 2009. Boundary conditions for lattice Boltzmann simulations with complex geometry flows. Computers & Mathematics with Applications, 58(5), pp.940-949.
[26] Ho, C.F., Chang, C., Lin, K.H. and Lin, C.A., 2009. Consistent boundary conditions for 2D and 3D lattice Boltzmann simulations. Computer Modeling in Engineering and Sciences (CMES), 44(2), p.137.
[27] Javaherdeh, K. and Ashorynejad, H.R., 2014. Magnetic field effects on force convection flow of a nanofluid in a channel partially filled with porous media using Lattice Boltzmann Method. Advanced Powder Technology, 25(2), pp.666-675.
[28] Mohamad, A.A., 2011. Lattice Boltzmann Method, London, Springer.
[29] Pourrajab R., 2013, Experimental investigation of forced convective heat transfer through channel with nanofluids. Msc Thesis, Shahid Chamran University, Ahvaz, Iran.
[30] Pak, B.C. and Cho, Y.I., 1998. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer an International Journal, 11(2), pp.151-170.
[31] Huminic, G. and Huminic, A., 2012. Application of nanofluids in heat exchangers: A review. Renewable and Sustainable Energy Reviews, 16(8), pp.5625-5638.
R.Bahoosh / JHMTR 8 (2021) 71- 85 85
[32] Maiga, S.E.B., Palm, S.J., Nguyen, C.T., Roy, G. and Galanis, N., 2005. Heat transfer enhancement by using nanofluids in forced convection flows. International journal of heat and fluid flow, 26(4), pp.530-546.
[33] Maxwell, J.C., 1873. A treatise on electricity and magnetism, Oxford: Clarendon Press.
[34] Bejan, A., 2013. Convection heat transfer. John wiley & sons.
[35] Incropera, F.P., Lavine, A.S., Bergman, T.L. and DeWitt, D.P., 2007. Fundamentals of heat and mass transfer. Wiley.
[36] Hornbeck, R.W., 1966, January. AN ALL-NUMERICAL METHOD FOR HEAT TRANSFER IN INLET OF A TUBE. In MECHANICAL ENGINEERING, 88(1), pp. 76. 345 E 47TH ST, NEW YORK, NY 10017: ASME-AMER SOC MECHANICAL ENG.