[1] Rezaei, A., Hadibafekr, S., Khalilian, M., Chitsaz, A., Mirzaee, I. and Shirvani, H., 2023. A Comprehensive numerical study on using lobed cross-sections in spiral heat exchanger: Fluid flow and heat transfer analysis. International Journal of Thermal Sciences, 193, p. 108464, doi:10.1016/j.ijthermalsci.2023.108464.
[2] Sans, M., Farges, O., Schick, V. and Parent, G., 2022. Solving transient coupled conductive and radiative transfers in porous media with a Monte Carlo Method: Characterization of thermal conductivity of foams using a numerical Flash Method. International Journal of Thermal Sciences, 179, p. 107656, doi:10.1016/j.ijthermalsci.2022.107656.
[3] Palluotto, L., Dumont, N., Rodrigues, P., Gicquel, O. and Vicquelin, R., 2019. Assessment of randomized Quasi-Monte Carlo method efficiency in radiative heat transfer simulations. Journal of Quantitative Spectroscopy and Radiative Transfer, 236, p. 106570, doi:10.1016/j.jqsrt.2019.07.013.
[4] Shi, Y., Song, P. and Sun, W., 2020. An asymptotic preserving unified gas kinetic particle method for radiative transfer equations. Journal of Computational Physics, 420, p. 109687, doi:10.1016/j.jcp.2020.109687.
[5] Maltby, J. D. and Burns, P. J., 1991. Performance, accuracy, and convergence in a three-dimensional monte carlo radiative heat transfer simulation. Numerical Heat Transfer, Part B: Fundamentals, 19(2), p. 191–209, doi:10.1080/10407799108944963.
[6] Miyahara, S. and Kobayashi, S., 1995. Numerical calculation of view factors for an axially symmetrical geometry. Numerical Heat Transfer, Part B: Fundamentals, 28(4), p. 437–453, doi:10.1080/10407799508928843.
[7] Quaky, D. L., Welty, J. R. and Drost, M. K., 1997. Monte carlo simulation of radiation heat transfer from an infinite plane to parallel rows of infinitely long tubes —hottel extended. Numerical Heat Transfer, Part A: Applications, 31(2), p. 131–142, doi:10.1080/10407789708914029.
[8] Hong, S. H. and Welty, J.R., 1999. Monte carlo simulation of radiation heat transfer in a three-dimensional enclosure containing a circular cylinder. Numerical Heat Transfer, Part A: Applications, 36(4), p. 395–409, doi:10.1080/104077899274714.
[9] Mazumder, S. and Kersch, A., 2000. A fast monte carlo scheme for thermal radiation in semiconductor processing applications. Numerical Heat Transfer, Part B: Fundamentals, 37(2), p. 185–199, doi:10.1080/104077900275486.
[10] Xia, X. L., Ren, D. P. and Tan, H. P., 2006. A curve monte carlo method for radiative heat transfer in absorbing and scattering gradient-index medium. Numerical Heat Transfer, Part B: Fundamentals, 50(2), p. 181–192, doi:10.1080/10407790500459387.
[11] Schweiger, H., Oliva, A., Costa, M. and Perez Segarra, C. D., 1999. A monte carlo method for the simulation of transient radiation heat transfer: application to compound honeycomb transparent insulation. Numerical Heat Transfer, Part B: Fundamentals, 35(1), p. 113–136, doi:10.1080/104077999276036.
[12] Mirhosseini, M. and Saboonchi, A., 2011. View factor calculation using the Monte Carlo method for a 3D strip element to circular cylinder. International Communications in Heat and Mass Transfer, 38(6), p. 821–826, doi:10.1016/j.icheatmasstransfer.2011.03.022.
[13] Mirhosseini, M. and Saboonchi, A., 2011. Monte Carlo method for calculating local configuration factor for the practical case in material processing. International communications in heat and mass transfer, 38(8), pp. 1142-1147. doi.org/10.1016/j.icheatmasstransfer.2011.05.003
[14] Wei, Q. and Jiang, Y., 2004. Simple approach to evaluate the view factors between internal heat sources and their environment. Annual ASHRAE conference, Nashville, TN, Transactions 2004, 110.
[15] Walker, T., Xue, S.-C., and Barton, G.W., 2010. Numerical Determination of Radiative View Factors Using Ray Tracing. ASME Journal of Heat and Mass Transfer 132, p. 072702. doi.org/10.1115/1.4000974
[16] Ravishankar, M., Mazumder, S., and Sankar, M., 2010. Application of the modified differential approximation for radiative transfer to arbitrary geometry. Journal of Quantitative Spectroscopy and Radiative Transfer 111, p. 2052. doi.org/10.1016/j.jqsrt.2010.05.020
[17] Arambakam, R., Hosseini, S. A., Vahedi Tafreshi, H. and Pourdeyhimi, B., 2011. A Monte Carlo simulation of radiative heat through fibrous media: Effects of boundary conditions and microstructural parameters. International Journal of Thermal Sciences, 50(6), p. 935, doi:10.1016/j.ijthermalsci.2011.01.015.
[18] Mazumder, S. and Ravishankar, M., 2012. General procedure for calculation of diffuse view factors between arbitrary planar polygons. International Journal of Heat and Mass Transfer, 55(23–24), p. 7330–7335.
[19] Matthew, A. D., Tan, C. K., Roach, P. A., Ward, J., Broughton, J. and Heeley, A., 2014. Calculation of the radiative heat-exchange areas in a large-scale furnace with the use of the monte carlo method. Journal of Engineering Physics and Thermophysics, 87(3), p. 732–742, doi:10.1007/s10891-014-1067-4.
[20] Wang, Z.H., 2014. Monte Carlo simulations of radiative heat exchange in a street canyon with trees. Solar Energy, 110, p. 704–713, doi:10.1016/j.solener.2014.10.012.
[21] Hajji, A. R., Mirhosseini, M., Saboonchi, A. and Moosavi, A., 2015. Different methods for calculating a view factor in radiative applications: Strip to in-plane parallel semi-cylinder. Journal of Engineering Thermophysics, 24(2), p. 169–180, doi:10.1134/S1810232815020071.
[22] Liu, Y. W., An, L. S. and Wu, R. j., 2016. Analysis of radiative energy loss in a polysilicon CVD reactor using Monte Carlo ray tracing method. Applied Thermal Engineering, 93, p. 269–278, doi:10.1016/j.applthermaleng.2015.09.046.
[23] Frank, A., Heidemann, W. and Spindler, K., 2016. Modeling of the surface-to-surface radiation exchange using a Monte Carlo method. Journal of Physics: Conference Series, 745(3), p. 032143, doi:10.1088/1742-6596/745/3/032143.
[24] Cortés, E., Gaviño, D., Calderón-Vásquez, I., García, J., Estay, D., Cardemil, J. M. and Barraza, R., 2023. An enhanced and optimized Monte Carlo method to calculate view factors in packed beds. Applied Thermal Engineering, 219, p. 119391, doi:10.1016/j.applthermaleng.2022.119391.
[25] Cumber, P., 2023. Calculating View Factor Systems with Internal Surfaces Using a Hybrid Monte-Carlo Method. http://dx.doi.org/10.2139/ssrn.4562214
[26] Sparrow, E. M., 1963. A New and Simpler Formulation for Radiative Angle Factors. ASME Journal of Heat and Mass Transfer, 85(2), p. 81–87, doi:10.1115/1.3686058.