[1] Kiwan, S. and Al-Nimr, M. A., 2001. Using porous fins for heat transfer enhancement. Journal of Heat Transfer, 123(4), pp.790-795.
[2] Kiwan, S. and Zeitoun, O., 2008. Natural convection in a horizontal cylindrical annulus using porous fins. International Journal of Numerical Methods for Heat & Fluid Flow. 18(5), pp.618-634.
[3] Nayfeh, A. H., 2008. Perturbation methods. John Wiley & Sons.
[4] Ganji, D. D., Kachapi, S. H. and Seyed, H., 2011. Analytical and numerical methods in engineering and applied sciences. Progress in Nonlinear Science, 3, pp.1-579.
[5] Ganji, D. D. and Kachapi, S. H., 2011. Analysis of nonlinear equations in fluids. Progress in Nonlinear Science, 2, pp.1-293.
[6] He, J. H., 2005. Homotopy perturbation method for bifurcation of nonlinear problems. International Journal of Nonlinear Sciences and Numerical Simulation, 6(2), pp. 207-208.
[7] Ganji, D. D., Abbasi, M., Rahimi, J., Gholami, M., Rahimipetroudi, I., 2014. On the MHD squeeze flow between two parallel disks with suction or injection via HAM and HPM. Frontiers of Mechanical Engineering, 9, pp. 270-280.
[8] Abbasi, M., Ganji, D. D., Rahimipetroudi, I., Khaki, M., 2014. Comparative analysis of MHD boundary-layer flow of viscoelastic fluid in permeable channel with slip boundaries by using HAM, VIM, HPM. Walailak Journal of Science and Technology (WJST), 11(7), pp. 551-567.
[9] He, J. H., 2007. Variational iteration method—some recent results and new interpretations. Journal of computational and applied mathematics, 207(1), pp. 3-17.
[10] Petroudi, R. I., Ganji, D. D., Shotorban, B. A., Nejad, K. M., Rahimi, E., Rohollahtabar, R., Taherinia, F., 2012. Semi-analytical method for solving non-linear equation arising of natural convection porous fin. Thermal Science, 16(5), pp. 1303-1308.
[11] He, J. H., 1999. Variational iteration method–a kind of non-linear analytical technique: some examples. International journal of non-linear mechanics, 34(4), pp.699-708.
[12] Vahabzadeh, A., Fakour, M., Ganji, D. D., Rahimipetroudi, I., 2014. Analytical accuracy of the one dimensional heat transfer in geometry with logarithmic various surfaces. Central European Journal of Engineering, 4, pp.341-351.
[13] Liao, S., 2004. On the homotopy analysis method for nonlinear problems. Applied mathematics and computation, 147(2), pp. 499-513.
[14] Petroudi, I. R., Ganji, D. D., Nejad, M. K., Rahimi, J., Rahimi, E., Rahimifar, A., 2014. Transverse magnetic field on Jeffery–Hamel problem with Cu–water nanofluid between two non parallel plane walls by using collocation method. Case Studies in Thermal Engineering, 4, pp.193-201.
[15] Hasankhani Gavabari, R., Abbasi, M., Ganji, D. D., Rahimipetroudi, I., Bozorgi, A., 2016. Application of Galerkin and Collocation method to the electrohydrodynamic flow analysis in a circular cylindrical conduit. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 38, pp. 2327-2332.
[16] Kumar, R. V., Sarris, I. E., Sowmya, G., Abdulrahman, A., 2023. Iterative Solutions for the Nonlinear Heat Transfer Equation of a Convective-Radiative Annular Fin with Power Law Temperature-Dependent Thermal Properties. Symmetry, 15(6), pp. 1204.
[17] Hoshyar, H.A., Rahimipetroudi, I., Ganji, D.D., Majidian, A.R., 2015. Thermal performance of porous fins with temperature-dependent heat generation via the homotopy perturbation method and collocation method. Journal of Applied Mathematics and Computational Mechanics, 14(4), pp.53-65.
[18] Varun Kumar, R. S., Alsulami, M. D., Sarris, I. E., Prasannakumara, B. C., Rana, S., 2023. Backpropagated neural network modeling for the non-fourier thermal analysis of a moving plate. Mathematics, 11(2), pp. 438.
[19] Sowmya, G., Kumar, R. S. V. and Banu, Y., 2023. Thermal performance of a longitudinal fin under the influence of magnetic field using Sumudu transform method with pade approximant (STM‐PA). ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, pp. e202100526.
[20] Jayaprakash, M. C., Alzahrani, H. A., Sowmya, G., Kumar, R. V., Malik, M. Y., Alsaiari, A., Prasannakumara, B. C., 2021. Thermal distribution through a moving longitudinal trapezoidal fin with variable temperature-dependent thermal properties using DTM-Pade approximant. Case Studies in Thermal Engineering, 28, pp. 101697.
[21] Alhejaili, W., Kumar, R.V., El-Zahar, E.R., Sowmya, G., Prasannakumara, B.C., Khan, M.I., Yogeesha, K.M., Qayyum, S., 2022. Analytical solution for temperature equation of a fin problem with variable temperature-dependent thermal properties: Application of LSM and DTM-Pade approximant. Chemical Physics Letters, 793, pp.139409.
[22] Khan, N. A., Sulaiman, M. and Alshammari, F. S., 2022. Analysis of heat transmission in convective, radiative and moving rod with thermal conductivity using meta-heuristic-driven soft computing technique. Structural and Multidisciplinary Optimization, 65 (11), pp. 317.
[23] Sowmya, G., Sarris, I. E., Vishalakshi, C. S., Kumar, R. S. V., Prasannakumara, B. C., 2021. Analysis of transient thermal distribution in a convective–radiative moving rod using two-dimensional differential transform method with multivariate pade approximant. Symmetry, 13(10), pp. 1793.
[24] Sun, Y. S., Ma, J. and Li, B. W., 2015. Spectral collocation method for convective–radiative transfer of a moving rod with variable thermal conductivity. International Journal of Thermal Sciences, 90, pp. 187-196.
[25] Hatami, M., Hasanpour, A. and Ganji, D. D., 2013. Heat transfer study through porous fins (Si3N4 and AL) with temperature-dependent heat generation. Energy Conversion and Management, 74, pp. 9-16.
[26] Ghasemi, S. E., Hatami, M., and Ganji, D. D., 2014. Thermal analysis of convective fin with temperature-dependent thermal conductivity and heat generation. Case Studies in Thermal Engineering, 4, pp. 1-8.
[27] Ghiaasiaan, S., 2010. Applied Gas Dynamics, Chapter 3 provides an overview of the Galerkin Method and its advantages and limitations in solving fluid dynamics problems. Cambridge University Press.
[28] Atkinson, K., 2018. An Introduction to Numerical Analysis, Chapter 8 discusses the Galerkin Method, highlighting its strengths, computational complexity, and convergence issues. CRC Press.
[29] Mukherjee, S., 2021. Numerical Methods in Engineering with Python, Chapter 9 provides an introduction to the Galerkin Method and the LSM, presenting their advantages and shortcomings, along with practical examples. CRC Press.
[30] Quarteroni, A., Saleri, F. and Gervasio, P., 2019. Scientific Computing with MATLAB and Octave, Chapter 7 discusses the Galerkin Method and the LSM, addressing their advantages, computational complexity, and convergence issues, with MATLAB and Octave code examples. Berlin: Springer.
[31] Hatami, M. and Ganji, D.D., 2013. Thermal performance of circular convective–radiative porous fins with different section shapes and materials. Energy Conversion and Management, 76, pp. 185-193.
[32] Hatami, M., Ahangar, G. R. M., Ganji, D. D., Boubaker, K., 2014. Refrigeration efficiency analysis for fully wet semi-spherical porous fins. Energy conversion and management, 84, pp. 533-540.
[33] Shirkhani, M. R., Hoshyar, H. A., Rahimipetroudi, I., Akhavan, H., Ganji, D. D., 2018. Unsteady time-dependent incompressible Newtonian fluid flow between two parallel plates by homotopy analysis method (HAM), homotopy perturbation method (HPM) and collocation method (CM). Propulsion and Power Research, 7(3), pp. 247-256.
[34] Hoshyar, H. A., Rahimipetroudi, I. and Ganji, D. D., 2019. Heat Transfer Performance on Longitudinal Porous Fins with Temperature-Dependent Heat Generation, Heat Transfer Coefficient and Surface Emissivity. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 43(2), pp. 383-391.
[35] Aziz, A., 2006. Heat conduction with maple. Philadelphia (PA): RT Edwards.