Physical Overview of the Instability in Laminar Wall-Bounded Flows of Newtonian Fluids at Subcritical Reynolds Numbers

Document Type : Review Article

Authors

1 Faculty of Mechanical Engineering, Semnan University, Semnan, Iran

2 Department of Mechanical and Aerospace Engineering, Clarkson University, Potsdam, NY, USA

Abstract

This paper reviews the latest findings on instability and subcritical transition to turbulence in wall-bounded flows (i.e., pipe Poiseuille flow, plane channel flow, and plane Couette flow). The main focus was on the early stage of transitional flow and the appearance of coherent structures. The scaling of threshold disturbance amplitude for the onset of natural transition was discussed. Generally, the scaling proved to be in the form of Ac = O(Reg) for Newtonian fluids where Re is the Reynolds number, g ≤ -1, and Ac is the critical perturbation amplitude. It was noted that exploration of perturbations like vortices, streaks, and traveling waves together with their amplitudes could clarify the instability and transition process. Hence, this paper focused on physical behavior and realizations of the transitional flow. Finally, a summary of consequential implications and some open issues for future works were presented and discussed.

Keywords

Main Subjects


[1]   Eckert, M., 2021. Pipe flow: a gateway to turbulence. Arch. Hist. Exact Sci., 75, pp. 249–282.
[2]   Ekman, V.W., 1911. On the change from steady to turbulent motion of liquids. Ark. Mat. Astron. Fys., 6(12), pp. 1–16.
[3]   Pfenniger, W., 1961. Transition in the inlet length of tubes at high Reynolds numbers. In Boundary Layer and Flow Control (pp. 970–80), New York: Pergamon.
[4]   Kundu, P.K. and Cohen, I.M., 2008. Fluid mechanics. 4th ed., Kidlington: Academic Press.
[5]   Meseguer, A. and Trefethen, L.N., 2003. Linearized pipe flow to Reynolds number 107. J. Comput. Phys., 186 (1), pp. 178-197.
[6]   John M.O., Obrist, D. and Kleiser, L., 2016. Secondary instability and subcritical transition of the leading-edge boundary layer. J. Fluid Mech., 792, pp. 682 – 711.
[7]   Romanov, V.A., 1972. Stability of plane-parallel Couette flow. Funct. Anal. Applics., 7, pp. 137–146.
[8]   Orszag, S. A., 1971. Accurate solution of the Orr-Sommerfeld stability equation. J. Fluid Mech., 50(4), pp. 689-703.
[9]   Davey, A. and Drazin, P.G., 1969. The stability of Poiseuille flow in a pipe. J. Fluid Mech., 36, pp. 209-218.
[10] Herbert, T., 1976. Periodic Secondary Motions in a Plane channel. In Proceedings of the Fifth International Conference on Numerical Methods in Fluid Dynamics (pp. 235-240), Springer-Verlag, New York.
[11] Nishioka, M., S Iida, S. and Y.Ichikawa, Y., 1975. An experimental investigation of the stability of plane Poiseuille flow. J. Fluid Mech, 72, pp. 731-751.
[12] Patel, V.C. and Head, M.R., 1969. Some observations on skin friction and velocity profiles in fully developed pipe and channel flows. J. Fluid Mech. 38, pp. 181-201.
[13] Schmid, P.J. and Henningson, D.S., 2001. Stability and Transition in Shear Flows. New York: Springer.
[14] Serrin, J., 1959. Mathematical principles of classical fluid mechanics, In C. Truesdell (Eds.), Fluid Dynamics I/Strömungsmechanik I (pp. 125-263), Springer, Berlin, Heidelberg.
[15] Joseph, D.D. and Carmi, S., 1969. Stability of Poiseuille flow in pipes, annuli and channels, Q. Appl. Math., 26, pp. 575-599.
[16] Shahinpoor, M. and Ahmadi, G., 1972. Stability of Cosserat fluid motions. Arch. Rational Mech. Anal., 47, pp. 188-194.
[17] Ahmadi, G., 1976. Stability of a micropolar fluid layer heated from below. Int. J. Eng. Sci., 14(1), pp. 81-89.
[18] Mirzaee, H., Ahmadi, G., Rafee, R. and Talebi, F., 2023. Physical overview of the instability in laminar wall-bounded flows of viscoplastic and viscoelastic fluids at subcritical Reynolds numbers. Journal of Heat and Mass Transfer Research, 10(1), pp. 135-146.
[19] Yaglom, A. M., 2012. Hydrodynamic instability and transition to turbulence. Vol. 100. Dordrecht: Springer Science & Business Media.
[20] Manneville, P., 2016. Transition to turbulence in wall-bounded flows: Where do we stand?. Mech. Eng. Rev., 3(2), 15-00684.
[21] Kuwabara, S., 1967. Nonlinear instability of plane Couette flow. Phys. Fluids, 10(9), pp. S115-S116.
[22] Chapman, S.J., 2002. Subcritical transition in channel flows. J. Fluid Mech., 451, pp. 35-97.
[23] Davies, S.J. and White, C.M., 1928. An experimental study of the flow of water in pipes of rectangular section. Proceedings of the Royal Society of London, Series A, 119(781), pp. 92-107.
[24] Meksyn, D. and Stuart, J.T., 1951. Stability of viscous motion between parallel planes for finite disturbances. Proceedings of the Royal Society of London, Series A, 208(1095), pp. 517-526.
[25] Stuart, J.T., 1956. On the effects of the Reynolds stress on hydrodynamic stability. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 36(S1), pp. S32-S38.
[26] Tillmark, N. and Alfredsson, P.H., 1992. Experiments on transition in plane Couette flow. J. Fluid Mech., 235, pp. 89-102.
[27] Böberg, L. and Brösa, U., 1988. Onset of Turbulence in a Pipe. Z. Naturforsch., 43a, pp. 697-726.
[28] Trefethen, L.N., Trefethen, A.E., Reddy, S.C. and Driscoll T.A., 1993. Hydrodynamic Stability without Eigenvalues. Science, 261 (5121), pp. 578-584.
[29] Landahl, M. T., 1972. Wave mechanics of breakdown. J. Fluid Mech., 56(4), pp. 775-802.
[30] Davidson, P. A., 2015. Turbulence: an introduction for scientists and engineers. 2nd ed., Oxford University Press.
[31] Hinze, J.O., 1975. Turbulence. 2nd ed., McGraw-Hill.
[32] Schmid, P.J. and Henningson, D.S., 1994. Optimal energy density growth in Hagen–Poiseuille flow. J. Fluid Mech., 277, pp. 197-225.
[33] Jovanović, M.R., 2021. From bypass transition to flow control and data-driven turbulence modeling: an input–output viewpoint. Annu. Rev. Fluid Mech., 53, pp. 311-345.
[34] Farrell, B.F. and Ioannou, P.J., 1993. Stochastic forcing of the linearized Navier–Stokes equations. Phys. Fluids, 5(11), pp. 2600-2609.
[35] Bamieh, B. and Dahleh, M., 2001. Energy amplification in channel flows with stochastic excitation. Phys. Fluids, 13(11), pp. 3258-3269.
[36] Darbyshire, A.G. and Mullin, T., 1995. Transition to turbulence in constant-mass-flux pipe flow. J. Fluid Mech, 289, pp. 83-114.
[37] Fedotov, S., Bashkirtseva, I. and Ryashko, L., 2002. Stochastic analysis of a non-normal dynamical system mimicking a laminar-to-turbulent subcritical transition. Phys. Rev. E, 66, p. 066310.
[38] Bergstrom, L.B., 2003. The effect of the Earth’s rotation on the transient amplification of disturbances in pipe flow. Phys. Fluids, 15, pp. 3028-3035.
[39] Faisst, H. and Eckhardt, B., 2004. Travelling waves in pipe flow. Phys. Rev. Lett., 91, p. 224502.
[40] Wedin, H. and Kerswell, R.R., 2004. Exact coherent structures in pipe flow: travelling wave solutions. J. Fluid Mech., 508, pp. 333–371.
[41] Waleffe, F., 1997. On a self-sustaining process in shear flows. Phys. Fluids, 9(4), pp. 883-900.
[42] Hamilton, J.M., Kim, J. and Waleffe, F., 1995. Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech., 287, pp. 317-348.
[43] Waleffe, F., 1995. Hydrodynamic Stability and Turbulence: Beyond Transients to a Self‐Sustaining Process. Studies in applied mathematics, 95(3), pp. 319-343.
[44] Hof, B., Van Doorne, C.W., Westerweel, J., Nieuwstadt, F.T., Faisst, H., Eckhardt, B., Wedin, H., Kerswell, R.R. and Waleffe, F., 2004. Experimental observation of nonlinear traveling waves in turbulent pipe flow. Science, 305(5690), pp. 1594-1598.
[45] Mellibovsky, F. and Meseguer, A., 2005. Global finite amplitude perturbations in medium aspect ratio pipe flow. J. Phys.: Conf. Ser., 14, p. 192.
[46] Mullin, T. and Peixinho, J., 2006. Recent Observations of the Transition to Turbulence in a Pipe. In Fluid Mechanics and Its Applications, vol. 78, (pp. 45-55), Springer, Dordrecht.
[47] Eckhardt, B., Schneider, T.M., Hof, B. and Westerweel, J., 2007. Turbulence Transition in Pipe Flow. Annu. Rev. Fluid Mech., 39, pp. 447–468.
[48] Nishi, M., Ünsal, B., Durst, F. and Biswas, G., 2008. Laminar-to-turbulent transition of pipe flows through puffs and slugs. J. Fluid Mech., 614, pp. 425–446.
[49] Loh, S.A. and Blackburn, H.M., 2011. Stability of steady flow through an axially corrugated pipe. Phys. Fluids, 23, p. 111703.
[50] Floryan, J. M., 2003. Vortex instability in a diverging–converging channel. J. Fluid Mech., 482, pp. 17-50.
[51] Tasaka, Y., Schneider, T.M. and Mullin, T., 2010. Folded Edge of Turbulence in a Pipe. Phys. Rev. Lett., 105, p. 174502.
[52] Avila, K., Moxey, D., De Lozar, A., Avila, M., Barkley, D. and Hof, B., 2011. The Onset of Turbulence in Pipe Flow. Sci., 333 (6039), pp. 192-196.
[53] Mullin, T., 2011. Experimental Studies of Transition to Turbulence in a Pipe. Annu. Rev. Fluid Mech., 43, pp. 1–24.
[54] Krauss, J., Ertunç, Ö., Ostwald, Lienhart, C.H. and Delgado, A., 2011. Evolution of transitional structures from puff to slug through multiple splitting in a pipe flow at low Reynolds number. J. Phys.: Conf. Ser., 318, p. 032012.
[55] Trip, R., Kuik, D.J., Westerweel, J. and Poelma, C., 2012. An experimental study of transitional pulsatile pipe flow. Phys. Fluids, 24, p. 014103.
[56] He, S. and Seddighi, M., 2013. Turbulence in transient channel flow. J. Fluid Mech., 715, pp. 60-102.
[57] Wu, X., Moin, P., Adrian, R.J. and Baltzerd, J.R., 2015. Osborne Reynolds pipe flow: Direct simulation from laminar through gradual transition to fully developed turbulence. PNAS, 112 (26), pp. 7920-7924.
[58] Hellström, L.H.O., Ganapathisubramani, B. and Smits, A.J., 2016. Coherent structures in transitional pipe flow. Phys. Rev. Fluids, 1, p. 024403.
[59] Novopashin, S.A., Skovorodko, P.A. and Sukhinin, G.I., 2016. Laminar-turbulent transition in Hagen–Poiseuille flow of a real gas. J. Turbl., 17 (9), pp. 870-877.
[60] Wu, X., Moin, P. and Adrian, R.J., 2020. Laminar to fully turbulent flow in a pipe: scalar patches, structural duality of turbulent spots and transitional overshoot. J. Fluid Mech., 896, A9.
[61] Cerbus, R.T. and Mullin, T., 2021. Driving determines the dynamics in transitional pipe flow. doi: 10.48550/arXiv.2110.14966.
[62] Zhou, Y., 2021. Turbulence theories and statistical closure approaches. Physics Reports, 935, pp. 1-117.
[63] Ricco, P. and Alvarenga, C., 2022. Growth of vortical disturbances entrained in the entrance region of a circular pipe. J. Fluid Mech., 932, A16.
[64] Hattori, H., Wada, A., Yamamoto, M., Yokoo, H., Yasunaga, K., Kanda, T. and Hattori, K., 2022. Experimental study of laminar-to-turbulent transition in pipe flow. Phys. Fluids 34, 034115.
[65] Avila, M., Barkley, D. and Hof, B., 2023. Transition to turbulence in pipe flow. Annu. Rev. Fluid Mech., 55, pp. 575-602.
[66] Panton, R.L., 2013. Incompressible Flow. 4th ed., John Wiley & Sons.
[67] Davidson, P.A., 2022. Incompressible fluid dynamics. Oxford University Press.
[68] Kline, S.J., Reynolds, W.C., Schraub, F.A. and Runstadler, P.W., 1967. The structure of turbulent boundary layers. J. Fluid Mech., 30(4), pp. 741-773.
[69] Hossain, M.Z. and Floryan, J.M., 2013. Instabilities of natural convection in a periodically heated layer. J. Fluid Mech., 733, pp. 33-67.
[70] Chandrasekhar, S., 1961. Hydrodynamic and hydromagnetic stability. Clarendon Press.
[71] Draad, A.A., Kuiken, G.D.C. and Nieuwstadt, F.T.M., 1998. Laminar–turbulent transition in pipe flow for Newtonian and non-Newtonian fluids. J. Fluid Mech., 377, pp. 267-312.
[72] Hof, B., Juel, A. and Mullin, T., 2003. Scaling of the turbulence transition threshold in a pipe. Phys. Rev. Lett., 91, p. 244502.
[73] Meseguer, A., 2003. Streak breakdown instability in pipe Poiseuille flow. Phys. Fluids, 15, pp. 1203-1213.
[74] Mellibovsky, F. and Meseguer, A., 2006. The role of streamwise perturbations in pipe flow transition. Phys. Fluids, 18, 074104.
[75] Ben-Dov, G. and Cohen, J., 2007. Instability of optimal non-axisymmetric base-flow deviations in pipe Poiseuille flow. J. Fluid Mech., 588, pp. 189–215.
[76] Peixinho, J. and Mullin, T., 2007. Finite-amplitude thresholds for transition in pipe flow. J. Fluid Mech., 582, pp. 169–178.
[77] Mellibovsky, F. and Meseguer, A., 2007. Pipe flow transition threshold following localized impulsive perturbations. Phys. Fluids, 19, 044102.
[78] Mellibovsky, F. and Meseguer, A., 2009. Critical threshold in pipe flow transition. Phil. Trans. R. Soc. A, 367, pp. 545–560.
[79] Tao, J., 2009. Critical instability and friction scaling of fluid flows through pipes with rough inner surfaces. Phys. rev. lett., 103(26), 264502.
[80] Nikuradse, J., 1933. Stromungsgesetze in Rauhen Rohren. VDI-Forschungsheft, 361.
[81] Schlichting, H. and Gersten, K., 2017. Boundary-Layer Theory. 9th ed., Berlin Heidelberg: Springer-Verlag.
[82] Colebrook, C. F., 1939. Turbulent flow in pipes, with particular reference to the transitional region between smooth and rough wall laws. J. Inst. Civil Engrs, 11, pp. 133–156.
[83] Cerbus, R.T., Sakakibara, J., Gioia G. and Chakraborty, P., 2020. The turbulent flow in a slug: a re-examination. J. Fluid Mech., 883, A13.
[84] Wygnanski, I. J. and Champagne, F. H., 1973. On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug. J. Fluid Mech., 59 (2), pp. 281–335.
[85] Ozcakir, O., Hall, P. and Blackburn, H.M., 2022. Exact coherent structures in pipe flow in the presence of wall transpiration. J. Fluid Mech., 940, A41.
[86] Orszag, S.A. and Kells, L.C., 1980. Transition to turbulence in plane Poiseuille and plane Couette flow. J. Fluid Mech., 96(1), pp. 159-205.
[87] Reddy, S.C., Schmid, P.J., Baggett, J.S. and Henningson, D.S., 1998. On stability of streamwise streaks and transition thresholds in plane channel flows. J. Fluid Mech., 365, pp. 269 – 303.
[88] Jovanović, M.R. and Bamieh, B., 2005. Componentwise energy amplification in channel flows. J. Fluid Mech., 534, pp. 145-183.
[89] Biaua, D. and Bottaro, A., 2004. Transient growth and minimal defects: Two possible initial paths of transition to turbulence in plane shear flows. Phys. Fluids, 16, 3515.
[90] Schmid, P.J., Lundbladh, A. and Henningson, D.S., 1994. Spatial evolution of disturbances in plane Poiseuille flow. In Transition, Turbulence and Combustion: Volume I Transition (pp. 287-297), Kluwer, Dordrecht.
[91] Zienicke, E.A. and Krasnov, D., 2005. Parametric Study of the Streak Breakdown Mechanism in Hartman Flow. Phys. Fluids 17, 114101.
[92] Cohen, J., Philip, J. and Ben-Dov, G., 2009. Aspects of linear and nonlinear instabilities leading to transition in pipe and channel flows. Phil. Trans. R. Soc. A, 367, pp. 509–527.
[93] Floryan, J.M. and Floryan, C., 2009. Traveling wave instability in a diverging–converging channel. Fluid Dyn. Res., 42(2), p. 025509.
[94] Kaminski, A.K., Caulfield, C.P. and Taylor, J.R., 2017. Nonlinear evolution of linear optimal perturbations of strongly stratified shear layers. J. Fluid Mech., 825, pp. 213-244.
[95] Roy, P., Weisgraber, T.H. and Alder, B.J., 2017. The Onset of Turbulence in Wall-bounded Flows with Surface Roughness and Fluctuations. In Advances in the Computational Sciences, (pp. 52-66), World Scientific Publishing Co.
[96] Sun, Y. and Hemati, M., 2019. Suppressing subcritical transition in plane Poiseuille flow. In AIAA Aviation 2019 Forum, 3713, Dallas, Texas.
[97] Ren, J., Fu, S. and Pecnik, R., 2019. Linear instability of Poiseuille flows with highly non-ideal fluids. J. Fluid Mech., 859, pp. 89-125.
[98] Khan, H.H., Anwer, S.F., Hasan, N. and Sanghi, S., 2021. Laminar to turbulent transition in a finite length square duct subjected to inlet disturbance. Phys. Fluids, 33, 065128.
[99] Liu, C., Shuai, Y., Rath, A. and Gayme, D.F., 2023. A structured input-output approach to characterizing optimal perturbations in wall-bounded shear flows. doi: 10.48550/arXiv.2303.10498.
[100]      Lundbladh, A., Henningson D.S. and Reddy, S.C., 1994. Threshold amplitudes for transition in channel flows. In Turbulence and Combustion (pp. 309-318), Kluwer, Dordrecht.
[101]      Philip, J., Svizher, A. and Cohen, J., 2007. Scaling Law for a Subcritical Transition in Plane Poiseuille Flow. Phys. Rev. Lett., 98, 154502.
[102]      Lemoult, G., Aider, J.L. and Wesfreid, J.E., 2012. Experimental scaling law for the sub-critical transition to turbulence in plane Poiseuille flow. Phys. Rev. E, 85, p. 025303(R).
[103]      Liu, C. and Gayme, D.F., 2021. Structured input–output analysis of transitional wall-bounded flows. J. Fluid Mech., 927, A25.
[104]      Couette, M., 1890. Etudes sur le frottement des liquides (Doctoral dissertation).
[105]      Reichardt, H., 1956. Über die Geschwindigkeitsverteilung in einer geradlinigen turbulenten Couetteströmung. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 36(S1), pp. S26-S29.
[106]      Daviaud, F., Hegseth, J. and Bergé, P., 1992. Subcritical transition to turbulence in plane Couette flow. Phys. Rev. Lett., 69(17), p. 2511.
[107]      Bergström, L.B., 2005. Nonmodal growth of three-dimensional disturbances on plane Couette–Poiseuille flows. Phys. Fluids, 17, 014105.
[108]      Klotz, L., Lemoult, G., Frontczak, I., Tuckerman, L.S. and Wesfreid, J.E., 2017. Couette-Poiseuille flow experiment with zero mean advection velocity: Subcritical transition to turbulence. Phys. Rev. Fluids 2, 043904.
[109]      Klotz, L. and Wesfreid, J.E., 2017. Experiments on transient growth of turbulent spots. J. Fluid Mech., 829, p. R4.
[110]      Liu, C., Colm-cille, P.C. and Gayme, D.F., 2022. Structured input–output analysis of stably stratified plane Couette flow. J. Fluid Mech., 948, p. A10.
[111]      Shuai, Y., Liu, C. and Gayme, D.F., 2023. Structured input–output analysis of oblique laminar–turbulent patterns in plane Couette–Poiseuille flow. Intl. J. Heat Fluid Flow, 103, p. 109207.
[112]      Dauchot, O. and Daviaud, F., 1995. Finite amplitude perturbation and spots growth mechanism in plane Couette flow. Physics of Fluids, 7(2), pp. 335-343.
[113]      Floryan, J.M., 2003. Wall-transpiration-induced instabilities in plane Couette flow. J. Fluid Mech. 488, pp. 151–188.
[114]      Duguet, Y., Brandt, L. and Larsson, B.R.J., 2010. Towards minimal perturbations in transitional plane Couette flow. Physical Review E, 82(2), p. 026316.
[115]      Duguet, Y., Monokrousos, A., Luca Brandt, L. and Henningson, D.S., 2013. Minimal transition thresholds in plane Couette flow. Phys. Fluids, 25, p. 084103.
[116]      Joglekar, M., Feudel, U. and Yorke, J.A., 2015. Geometry of the edge of chaos in a low-dimensional turbulent shear flow model. Phys. Rev. E, 91(5), p. 052903.
[117]      Liu, C. and Gayme, D.F., 2020. Input-output inspired method for permissible perturbation amplitude of transitional wall-bounded shear flows. Phys. Rev. E, 102(6), p. 063108.
[118]      Kalur, A., Seiler, P. and Hemati, M.S., 2021. Nonlinear stability analysis of transitional flows using quadratic constraints. Phys. Rev. Fluids, 6(4), p. 044401.