[1] Eringen, A.C., 1966. Theory of micropolar fluids. Journal of mathematics and Mechanics, pp.1-18.
[2] Mishra, S.R., Dash, G.C. and Pattnaik, P.K., 2015. Flow of heat and mass transfer on MHD free convection in a micropolar fluid with heat source. Alexandria Engineering Journal, 54(3), pp.681-689.
[3] Haque, M.Z., Alam, M.M., Ferdows, M. and Postelnicu, A., 2012. Micropolar fluid behaviors on steady MHD free convection and mass transfer flow with constant heat and mass fluxes, joule heating and viscous dissipation. Journal of King Saud University-Engineering Sciences, 24(2), pp.71-84.
[4] Rahman, M.M., Aziz, A. and Al-Lawatia, M.A., 2010. Heat transfer in micropolar fluid along an inclined permeable plate with variable fluid properties. International Journal of thermal sciences, 49(6), pp.993-1002.
[5] Aurangzaib, Kasim, A.R.M., Mohammad, N.F. and Shafie, S., 2013. Unsteady MHD mixed convection flow of a micropolar fluid along an inclined stretching plate. Heat Transfer—Asian Research, 42(2), pp.89-99.
[6] Srinivasacharya, D. and Bindu, K.H., 2016. Entropy generation in a micropolar fluid flow through an inclined channel. Alexandria engineering journal, 55(2), pp.973-982.
[7] Ananthaswamy, V., Nithya, T. and Santhi, V.K., 2019. A Mathematical study on MHD pIane Poiseuille flow in a porous channel with non-uniform plate temperature. Journal of Applied Science and Computations, 6(3), pp.1178-1194.
[8] Sekhar, B.C., Kumar, P.V. and Veera Krishna, M., 2023. Changeable Heat and Mass Transport on Unsteady MHD Convective Flow Past an Infinite Vertical Porous Plate. Journal of Heat and Mass Transfer Research, 10(2), pp.207-222.
[9] El Hamma, M., Aberdane, I., Taibi, M., Rtibi, A. and Gueraoui, K., 2023. Analysis of MHD thermosolutal convection in a porous cylindrical cavity filled with a Casson nanofluid, considering Soret and Dufour effects. Journal of Heat and Mass Transfer Research, 10(2), pp.197-206.
[10] Meenakshi, V., 2021. Dufour and Soret Effect on Unsteady MHD Free Convection and Mass Transfer Flow Past an Impulsively Started Vertical Porous Plate Considering with Heat Generation. Journal of Heat and Mass Transfer Research, 8(2), pp.257-266..
[11] Swapna, D., Govardhan, K., Narender, G. and Misra, S., 2023. Viscous Dissipation and Chemical Reaction on Radiate MHD Casson Nanofluid Past a Stretching Surface with a Slip Effect. Journal of Heat and Mass Transfer Research, 10(2), pp.315-328.
[12] Dash, A.K., Mishra, S.R. and Acharya, B.P., 2017. Chemical reaction effect of MHD micropolar fluid flow between two parallel plates in the presence of heat source/sink. Model Measurement Control B, 86(3), pp.593-608.
[13] Rafiq, M., Rehman, A., Sheikh, N., Saleem, M., Umar Farooq, M., 2023. Numerical Study of the Boundary Layer Flow Problem over a Flat Plate by Finite Difference Method. Applied Engineering, 7(2), pp. 27-36.
[14] Oyelami, F.H., Olumide, F.B., Olubunmi, I.E. and Yetunde, S.B.O., 2024. Numerical Study of Chemical Reaction and Magnetic Field Effects on MHD Boundary Layer Flow over a Flat Plate. CFD Letters, 16(3), pp.55-68.
[15] Mehala, N. and Rajendran, L., 2014. Analysis of mathematical modelling on potentiometric biosensors. International Scholarly Research Notices, 2014(1), p.582675.
[16] Shirly, P.F., Narmatha, S. and Rajendran, L., 2013. Analytical solution of boundary value problem in reactive gas absorption. International Journal of Mathematical Archive-4 (6), pp.228-242.
[17] Ananthaswamy, V. and Rajendran, L., 2012. Analytical solutions of some two-point non-linear elliptic boundary value problems.
[18] Rasi, M., Rajendran, L. and Subbiah, A., 2015. Analytical expression of transient current-potential for redox enzymatic homogenous system. Sensors and Actuators B: Chemical, 208, pp.128-136.
[19] Liao, S.J., 1995. An approximate solution technique not depending on small parameters: a special example. International Journal of Non-Linear Mechanics, 30(3), pp.371-380.
[20] Ananthaswamy, V. and Rajendran, L., 2012. Approximate analytical solution of non-linear kinetic equation in a porous pellet. Global Journal of pure and applied mathematics, 8(2), pp.101-111.
[21] Subanya, R.R., Ananthaswamy, V. and Sivasundaram, S., 2023. Semi analytical expressions of a non-linear boundary value problem for immobilized enzyme in porous planar, cylindrical and spherical. Nonlinear Studies, 30(1).
[22] Wazwaz, A.M., 2014. The variational iteration method for solving linear and nonlinear ODEs and scientific models with variable coefficients. Central European Journal of Engineering, 4, pp.64-71.
[23] He, J.H., 1999. Homotopy perturbation technique. Computer methods in applied mechanics and engineering, 178(3-4), pp.257-262.
[24] He, J.H., 2003. Homotopy perturbation method: a new nonlinear analytical technique. Applied Mathematics and computation, 135(1), pp.73-79.
[25] Mousaa, M.M. and Ragab, S.F., 2008. Application of the homotopy perturbation method to linear and nonlinear schrödinger equations. Zeitschrift für Naturforschung A, 63(3-4), pp.140-144.
[26] Shanthi, D., Ananthaswamy, V. and Rajendran, L., 2013. Analysis of non-linear reaction-diffusion processes with Michaelis-Menten kinetics by a new Homotopy perturbation method.
[27] Shirly Peace, F., Sathiyaseelan, N. and Rajendran, L., 2014. Analytical Solution of Nonlinear Dynamics of a Self‐Igniting Reaction‐Diffusion System Using Modified Adomian Decomposition Method. International Journal of Chemical Engineering, 2014(1), p.825797.
[28] Liao, S., 2004. On the homotopy analysis method for nonlinear problems. Applied mathematics and computation, 147(2), pp.499-513.
[29] Ananthaswamy, D.V. and Kala, S., 2014. L. Rajendran Approximate analytical solution of non-linear initial value problem for an autocatalysis in a continuous stirred tank reactor: Homotopy analysis method. International Journal of Mathematical Archive, 5(4), pp.1-12.
[30] Anantliaswamy, V., Nithya, T. and Santhi, V.K., 2019. Approximate analytical expressions of a boundary layer flow of viscous fluid using the modified Homotopy analysis method. Journal of Information and Computational Sciences, 9(8), pp.534-541.
[31] Nisar, K.S., Mohapatra, R., Mishra, S.R. and Reddy, M.G., 2021. Semi-analytical solution of MHD free convective Jeffrey fluid flow in the presence of heat source and chemical reaction. Ain Shams Engineering Journal, 12(1), pp.837-845.
[32] Sivasankari, S., Ananthaswamy, V. and Sivasundaram, S., 2023. A new approximate analytical method for solving some non-linear initial value problems in physical sciences. Mathematics in Engineering, Science & Aerospace (MESA), 14(1).
[33] Chitra, J., Ananthaswamy, V., Sivasankari, S. and Sivasundaram, S., 2023. A new approximate analytical method (ASM) for solving non-linear boundary value problem in heat transfer through porous fin. Mathematics in Engineering, Science & Aerospace (MESA), 14(1).
[34] Venugopal, K., Eswari, A. and Rajendran, L., 2011. Mathematical model for steady state current at PPO-modified micro-cylinder biosensors. Journal of Biomedical Science and Engineering, 4(09), p.631.
[35] Ananthaswamy, V. and Narmatha, S., 2019. Comparison between the new Homotopy perturbation method and modified Adomain decomposition method in solving a system of non-linear self igniting reaction diffusion equations. International Journal of Emerging Technologies and Innovative Research (www. jetir. org), ISSN, pp.2349-5162.
[36] Sharma, S. and Jain, S., 2024. Chemical Reactions on MHD Couple Stress Fluids towards Stretchable Inclined Cylinder. Journal of Heat and Mass Transfer Research.
[37] Konwar, H., 2022. Flow, Heat and Mass Transfer past a Stretching Sheet with Temperature Dependent Fluid Properties in Porous Medium. Journal of Heat and Mass Transfer Research, 9(1), pp.17-26.