[1] Ishak, A., Nazar, R., Pop, I., 2008. Uniform suction/blowing effect on flow and heat transfer due to a stretching cylinder. Applied Mathematical Modeling, 32 (10), pp. 2059-2066. doi: 10.1016/j.apm.2007.06.036.
[2] Datta, P., Anilkumar, D., Roy, S., Mahani, N. C., 2006. Effect of non-uniform slot injection (suction) on a forced flow over a slender cylinder. International Journal of Heat and Mass Transfer, 49 (13), pp. 2366-2371. doi:10.1016/ijheatmasstransfer.2005.10.044.
[3] Mollamahdi M., Abbaszadeh, M., Sheikhzadeh, G.A., 2016. Flow field and heat transfer in a channel with permeable wall filled with Al_{2}O_{3}-Cu/Water micro polar hybid nano fluid, effects of chemical reaction and magnetic field. Journal of Heat and Mass Transfer Research, 3(2), pp.101-114. doi: 10.22075/JHMTR.2016.447.
[4] Zhou, F., Lee, J., Wang, R., Su, H., 2022. Mechanisms of efficient desalination by a two-dimensional porous nano sheet prepared via bottom-up assembly of cucurbit urils. Membranes, 12, p. 12030252. doi: 10.3390/membranes 12030252.
[5] Ali, M., Bostani, M., Rashidi, S., Valipour, M.S., 2023. Challenges and opportunities of desalination with renewable energy resources in middle east countries. Renewable and Sustainable Energy Review, 184, pp. 113543. doi: 10.1016/j.rser.2023.113543.
[6] Deghan, M., Rahmani, Y.,Ganji, D.D., Saedodin, S., Valipour, M.S., Rashidi, S., Convetcion-radiation heat transfer in solar heat exchangers filled with a porous medium: homotopy perturbation method versus numerical analysis. Renewable Energy, 74, pp. 448-455. doi: 10.1016/j.renene.2014.08.044.
[7] Kametani, Y., Fukagata, K., Orlu, R., Schlatter, P., 2015. Effect of uniform blowing/suction in a turbulent boundary layer at moderate Reynolds number. International Journal of Heat and Fluid Flow, 55, pp. 132-142. doi: 10.1016/ijheatfluidflow.2015.05.019.
[8] Chandra Sekhar, B., Vijay Kumar P., Veera Krishna M., 2023. Changeable heat and mass transport of unsteady MHD convective flow past an infinite vertical porous plate. Journal of Heat and Mass Transfer Research, 10 (2), pp. 207-222. doi: 10.22075/JHMTR.2023.31618.1469.
[9] Akinbo B.J., Olajuwon B.I., 2022. Stagnation-point flow of a Walters’ B fluid towards a vertical stretching surface embedded in a porous medium with elastic-deformation and chemical reaction. Journal of Heat and Mass Transfer Research,9 (1), pp. 27-38. doi: 10.22075/JHMTR.2022.21722.1313.
[10] Aly A., Chamkha A.J., Raizah Z.A., 2020. Radiation and chemical reaction effects on unsteady coupled heat and mass transfer by free convection from a vertical plate embedded in a porous medium. Journal of Heat and Mass Transfer Research, 7 (2), pp. 95-103. doi: 10.22075/JHMTR.2019.10763.1149.
[11] Umavathi, J.C., Chamkha, A.J., Mateen, A., Al-Mudhaf, A., 2009. Unsteady oscillatory flow and heat transfer in a horizontal composite porous medium channel. Non-linear Analysis: Modelling and Control, 14(3), pp. 379-415. doi: 10.15388/NA.2009.14.3.14503.
[12] Deghan M., Valipour, M.S., Keshmiri, A., Saedodin, S., Shokri, N., 2016. On the thermally developing forced convection through a porous media under the local thermal non-equilibrium condition: an analytical study. International Journal of Heat and Mass Transfer, 92, pp. 815-823. doi: 10.1016/j.ijheatmasstransfer.2015.08.091.
[13] Deghan, M,Valipour, M.S., Saedodin, S., 2015. Temperature-dependent conductivity in forced convection of heat exchangers filled with porous media: a perturbation solution. Energy Conversion and Management, 92, pp. 259-266. doi: 10.1016/j.enconman.2014.12.011.
[14] Deghan, M., Valipour, M.S., Saedodin, S., Mahmoudi, Y., 2016. Investigation of forced convection through entrance region of a porous filled micro channel: an analytical study based on scale analysis. Applied Thermal Engineering, 99, pp. 446-454. doi: 10.1016/j.applthermaleng.2015.12.086.
[15] Chakravarty, A., Datta, P., Ghosh, K., Sen, S., Mukhopadhyay, A., 2018. Mixed convection heat transfer in an enclosure containing a heat generating porous bed under the influence of bottom injection. International Journal of Heat and Mass Transfer, 117, pp. 645-657. doi: 10.1016/j.ijheatmasstransfer.2017.10.046.
[16] Sheremet, M.A., Rosca, N.C., Rosca, A.V., Pop, I., 2018. Mixed convection heat transfer in a square porous cavity filled with a nanofluid with suction/injection effect. Computers and Mathematics with Applications, 76 (11-12), pp. 2665-2677. doi: 10.1016/j.camwa.2018.08.069.
[17] Gupta, A.S., Misra, J.C., Reza, M., 2003. Effects of suction or blowing on the velocity and temperature distribution in the flow past a porous flat plate of a power-law fluid. Fluid Dynamics Research, 32 (6), pp. 283-294. doi: 10.1016/S0169-5983(03)00068-6.
[18] Radnia, H., Nazar, A.R.S., 2017. Temperature profile of a power-law fluid flowing over a moving wall with arbitrary injection/suction and internal heat generation/absorption. Journal of Heat and Mass Transfer Research, 4 (1), pp. 53-64. doi:10.22075/JHMTR.20175.519.
[19] Mustapha, El., Hamma., Ilham A., Mohammed, T., Ahmed, R., Kamal, G., 2023. Analysis of MHD thermosolutal convection in a porous cylindrical cavity filled with a Casson nano fluid, considering Soret and Dufour effects. Journal of Heat and Mass Transfer Research, 10 (2), pp. 197-206. doi: 10.22075/JHMTR.2023.30532.1439.
[20] Madhy, A., 2016. Unsteady MHD slip flow of a non-Newtonian Casson fluid due to a stretching sheet with suction or blowing effect. Journal of Applied Fluid Mechanics, 9 (2), pp. 785-793. doi: 10.18869/ACADPUB.JAFM.68.225.24687.
[21] Dash, G.C., Ojha, K.L., 2018. Viscoelastic hydromagnetic flow between two porous parallel plates in the presence of sinusoidal pressure gradient. Alexandria Engineering Journal, 57 (4), pp. 3463-3471. doi: 10.1016/j.aej.2017.12.011.
[22] Khan, M.B., Sasmal, C., 2023. Electro-elastic instability in electroosmotic flows of viscoelastic fluids through a model porous system. European Journal of Mechanics –B/Fluids, 97, pp. 173-186. doi: 10.1016/j.euromechflu.2022.10.004.
[23] Padma Devi, M., Srinivas, S., 2023.Two layered immiscible flow of viscoelastic liquid in a vertical porous channel with Hall current, thermal radiation and chemical reaction. International Communications in Heat and Mass Transfer, 142, p.106612. doi: 10.1016/j.icheatmasstransfer.2023.106612.
[24] Ariel, P.D. 2002. On exact solutions of flow problems of a second grade fluid through two parallel porous walls. International Journal of Engineering Science, 40 (8), pp. 913-941. doi: 10.1016/S0020-7225(01)00073-8.
[25] Akbarzadeh, P., 2016. Pulsatile magnetohydrodynamic blood flows through porous blood vessels using a third-grade non-Newtonian fluid model. Computer Methods and Programs in Biomedicine, 126, pp.3-19. doi: 10.1016/j.cmpb.2015.12.016.
[26] Hassan, A.R., Salawu, S.O., 2019. Analysis of buoyancy driven flow of a reactive heat generating third grade fluid in a parallel channel having convective boundary conditions. SN.Applied Sciences, 1, 919. doi: 10.1007/s42452-019-0864-y.
[27] Hayat, T., Ahmed, N., Sajid, M., 2008. Analytic solution for MHD third order fluid in a porous channel. Journal of Computational and Applied Mathematics, 214 (2), pp. 572-582. doi: 10.1016/j.cam.2007.03.013.
[28] Adesanya S.O., Falade J.A., 2015. Hydromagnetic third grade fluid flow through a channel filled with porous medium. Alexandria Engineering Journal, 54(3), pp. 615-622. doi: 10.1016/j.aej.2015.05.014.
[29] Hatami, M., Ganji, D.D., 2014. Thermal and flow analysis of micro channel heat sink (MCHS) cooled by Cu-water nano fluid by porous media approach and least square method. Energy Conversion and Management, 78, pp. 347-358. doi: 10.1016/j.enconman.2013.10.063.