Application of the ABC Algorithm in Parameter Estimation and Kinetic Model Selection in Propionic Fermentation

Document Type : Full Length Research Article

Authors

1 Simulation and Computational Biology Laboratory, High Performance Computing Center, UFPA, Belém-PA, Brazil

2 Faculty of Chemical Engineering, Federal University of Pará, Belém, PA, 66075-110, Brazil

3 Deparatament of Mechanical Engineering, Federal University of Amazonas, Manaus, AM, 69067-005, Brazil

4 Faculty of Materials Engineering, Federal University of Pará, Belém, PA, 66075-110, Brazil

Abstract

A propionic acid fermentation process not only provides a more sustainable approach but also opens the door to propionic acid production capacity in regions with limited petroleum supplies. With fermentation, low-cost substrates can be used, such as residual biomass; reducing their concentration in nature. This process becomes interesting because from it propionic acid is considered natural. Several models have already been developed to describe the dynamics of components such as: Microorganism (biomass), nutrients (substrate), metabolites (product). However, a challenge is how to define the model that best represents the kinetic term, and therefore, there are several models for this modeling. This article's novelty is the application of the Bayesian technique (Computational Bayesian Approximation) to estimate parameters and simultaneously select the best model. Model validation was carried out considering propionic fermentation regarding experimental data from the literature, which selected the Andrews model as the best to predict the dynamic of biomass, substrate and product by the following parameters estimated = 0.192,
ms = 0.005, mp = 0.017.

Keywords

Main Subjects


[1]   Stowers, C. C., Cox, B. M., & Rodriguez, B. A., 2014. Development of an industrializable fermentation process for propionic acid production. Journal of Industrial Microbiology and Biotechnology41(5), pp.837-852.
[2]   Wang, Z., & Yang, S. T., 2013. Propionic acid production in glycerol/glucose co-fermentation by Propionibacterium freudenreichii subsp. shermanii. Bioresource technology137, pp. 116-123.
[3]   Monge, E. C., Levi, M., Forbin, J. N., Legesse, M. D., Udo, B. A., deCarvalho, T. N., & Gardner, J. G., 2020. High-throughput screening of environmental polysaccharide-degrading bacteria using biomass containment and complex insoluble substrates. Applied microbiology and biotechnology, 104, pp. 3379-3389.
[4]   Himmi, E. H., Bories, A., Boussaid, A., & Hassani, L., 2000. Propionic acid fermentation of glycerol and glucose by Propionibacterium acidipropionici and Propionibacterium freudenreichii ssp. shermanii. Applied Microbiology and Biotechnology53, pp. 435-440.
[5]   Pradhan, N., Dipasquale, L., d'Ippolito, G., Fontana, A., Panico, A., Lens, P. N.,& Esposito, G., 2016. Kinetic modeling of fermentative hydrogen production by Thermotoga neapolitana. International Journal of Hydrogen Energy, 41(9), pp. 4931-4940.
[6]   Miller, K. V., & Block, D. E., 2020. A review of wine fermentation process modeling. Journal of Food Engineering, 273, p.109783.
[7]   Waszkielis K., Białobrzewski I., Bułkowska K., 2022. Application of anaerobic digestion model No. 1 for simulating fermentation of maize silage, pig manure, cattle manure and digestate in the full-scale biogas plant. Fuel, 317, p. 123491, ISSN 0016-2361.
[8]   De Crescenzo C., Marzocchella A., Karatza D., Chianese S., Musmarra D., 2024. Autogenerative high-pressure anaerobic digestion modelling of volatile fatty acids: Effect of pressure variation and substrate composition on volumetric mass transfer coefficients, kinetic parameters, and process performance. Fuel, 358, Part A, p. 130144, ISSN 0016-2361.
[9]   Wang, J., & Wan, W., 2009. Kinetic models for fermentative hydrogen production: a review. International journal of hydrogen energy, 34(8), pp. 3313-3323.
[10] Zhao, M., Zhao, S., & Liu, F., 2023. Semi− Supervised Hybrid Modeling of the Yeast Fermentation Process. Machines11(1),p. 63.
[11] Marinho, C., Santos, A., Barreto, L., Saraiva, S., Carvalho, F., & Coêlho, d., 2018. avaliação cinética e modelagem matemática na fermentação propiônica. XXII congresso brasileiro de engenharia química, são paulo - sp
[12] Monod, J., 1949. The growth of bacterial cultures. Annual review of microbiology3(1), pp. 371-394.
[13] Andrews, J. F., 1968. A mathematical model for the continuous culture of micro-organisms utilizing inhibitory substrates. Biotechnol Bioeng.
[14] Nunes, K. G. P., Dávila, I. V. J., Amador, I. C. B., Estumano, D. C., & Féris, L. A., 2021. Evaluation of zinc adsorption through batch and continuous scale applying Bayesian technique for estimate parameters and select model. Journal of Environmental Science and Health, Part A56(11), pp. 1228-1242.
[15] Moura, C. H., Viegas, B. M., Tavares, M., Macedo, E., & Estumano, D. C., 2022. Estimation Of Parameters And Selection Of Models Applied To Population Balance Dynamics Via Approximate Bayesian Computational. Journal of Heat and Mass Transfer Research9(1), pp. 53-64.
[16] Nunes, K. G. P., Davila, I. V. J., Arnold, D., Moura, C. H. R., Estumano, D. C., & Féris, L. A., 2022. Kinetics and thermodynamic study of laponite application in caffeine removal by adsorption. Environmental Processes, 9(3), p. 47.
[17] Tavares, R., Santana Dias, C., Rodrigues Moura, C. H., Rodrigues, E. C., Viegas, B., Macedo, E., & Estumano, D. C., 2022. Parameter Estimation in Mass Balance Model Applied in Fixed Bed Adsorption Using the Markov Chain Monte Carlo Method. Journal of Heat and Mass Transfer Research, 9(2), pp. 219-232.
[18] Ferreira, J. R., Sena, A. P., Coutinho, J. P. D. S., Estumano, D. C., & Macêdo, E. N., 2023b. Fluid dynamics characterization of stirred-tank reactors via approximate Bayesian computational (ABC) for parameter estimation and model selection. Numerical Heat Transfer, Part A: Applications, pp. 1-18.
[19] Jurado-Davila, I. V., Schneider, I. A. H., Estumano, D., & Amaral Féris, L., 2023b. Phosphate removal using dolomite modified with ultrasound: mathematical and experimental analysis. Journal of Environmental Science and Health, Part A, 58(5), pp. 469-482.
[20] Mitchell, D. A., Krieger, N., & Estumano, D. C., 2023. Estimation of selectivities in the lipase-catalyzed esterification of trimethylolpropane with fatty acids. Biochemical Engineering Journal, 198, p.109024.
[21] Ferreira, J. R., Senna, A. P., Macêdo, E. N., & Estumano, D. C., 2023a. Aerobic bioreactors: A Bayesian point of view applied to hydrodynamic characterization and experimental evaluation of tracers. Chemical Engineering Science, 277, p.118850.
[22] Jurado-Davila, V., De Oliveira, J. T., Estumano, D., & Féris, L. A., 2023a. Fixed-bed column for phosphate adsorption combining experimental observation, mathematical simulation, and statistics: Classical and Bayesian. Separation and Purification Technology, 317, p.123914.
[23] Toffoli de Oliveira, J., da Luz Arsufi, A. B., Cardoso Estumano, D., & Féris, L. A., 2023. Bayesian Computational Technique for Modeling Caffeine Adsorption in a Fixed-Bed Column: Use of the Maximum Adsorption Capacity Deterministically and Experimental Design. Industrial & Engineering Chemistry Research, 62(18), pp. 7127-7137.
[24] Estumano, D. C., Hamilton, F. C., Colaco, M. J., Leiroz, A. J., Orlande, H. R. B., Carvalho, R. N., & Dulikravich, G. S., 2014. Bayesian estimate of mass fraction of burned fuel in internal combustion engines using pressure measurements. In Engineering Optimization IV-Proceedings of the 4th International Conference on Engineering Optimization (pp. 997-1004).
[25] Toni, T., Welch, D., Strelkowa, N., Ipsen, A., & Stumpf, M. P., 2009. Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. Journal of the Royal Society Interface, 6(31), pp. 187-202.
[26] Liepe, J., Kirk, P., Filippi, S., Toni, T., Barnes, C. P., & Stumpf, M. P., 2014. A framework for parameter estimation and model selection from experimental data in systems biology using approximate Bayesian computation. Nature protocols, 9(2), pp. 439-456.
[27] Turner, B. M., & Van Zandt, T., 2012. A tutorial on approximate Bayesian computation. Journal of Mathematical Psychology, 56(2), pp. 69-85.
[28] Leuenberger, C., & Wegmann, D., 2010. Bayesian computation and model selection without likelihoods. Genetics, 184(1), pp. 243-252.
[29] Marjoram, P., Molitor, J., Plagnol, V., & Tavaré, S., 2003. Markov chain Monte Carlo without likelihoods. Proceedings of the National Academy of Sciences, 100(26), pp. 15324-15328.
[30] Silva, N. P., Loiola, B. R., Costa, J. M., &, Helcio, R.B., 2020. Approximate Bayesian Computation Applied to Model Selection and Parameter Calibration in Cell Proliferation. In 14th WCCM-ECCOMAS Congress 2020 (Vol. 1300).
[31] Pirt, S. J., 1965. The maintenance energy of bacteria in growing cultures. Proceedings of the Royal Society of London. Series B. Biological Sciences, 163(991), pp. 224-231.
[32] Bailey, J. E., & Ollis, D. F., 1986. Biochemical Engineering Fundamentals. McGraw-Hill.
[33] Mulchandani, A.; Luong, J. H. T., 1989. Microbial inhibition kinetics revisited. Enzyme and Microbial Technology, 11(2), p. 66-73.