[1] Tsyplin, G.G., 2009. Flows with phase transition in porous media. Moscow: Fizmatlit.
[2] Fetsov, S.S. and Lutsenko, N.A., 2020. Numerical analysis of the influence of side wall shape on the efficiency of thermal energy storages based on granular phase change materials. Computational Continuum Mechanics, 13(2), pp. 189-204. doi: 10.7242/1999-6691/2020.13.2.15.
[3] Donskoy, I., 2022. Influence of heating conditions on formation and development of agglomerates in a reactive porous medium. Heat Transfer Research, 53, pp. 25-36. doi: 10.1615/HeatTransRes.2022038756.
[4] Misyura, S.Y. and Donskoy, I.G., 2022. Dissociation of gas hydrate for a single particle and for a thick layer of particles: The effect of self-preservation on the dissociation kinetics of the gas hydrate layer. Fuel, 314, p. 122759. doi: 10.1016/j.fuel.2021.122759.
[5] Mallick, S. and Gayen, D., 2023. Thermal behaviour and thermal runaway propagation in lithium-ion battery systems – A critical review. Journal of Energy Storage, 62, p. 106894. doi: 10.1016/j.est.2023.106894
[6] Votyakov, E.V. and Bonanos, A.M., 2014. A perturbation model for stratified thermal energy storage tanks. International Journal of Heat and Mass Transfer, 75, pp. 218-223. doi: 10.1016/j.ijheatmasstransfer.2014.03.071
[7] Cano-Pleite, E., Hernandez-Jimenez, F., Garcia-Gutierrez, L.M. and Soria-Vergudo A., 2023. Thermo-economic optimization of a novel confined thermal energy storage system based on granular material. Applied Thermal Engineering, 224, p. 120123. doi: 10.1016/j.applthermaleng.2023.120123
[8] Soria-Verdugo, A., Guil-Pedrosa, J.F., Hernandez-Jimenez, F., Garcia-Gutierrez, L.M., Cano-Pleite, E. and Garcia-Hernando N., 2023. Experimental analysis of a novel confined bed system for thermal energy storage. Journal of Energy Storage, 69 p. 107972. doi: 10.1016/j.est.2023.107972
[9] de Gracia, A. and Cabeza, L.F., 2017. Numerical simulation of a PCM packed bed system: A review. Renewable and Sustainable Energy Reviews, 69 pp. 1055-1063. doi: 10.1016/j.rser.2016.09.092
[10] Fetsov, S.S. and Lutsenko, N.A., 2023. A novel computational model and OpenFOAM solver for simulating thermal energy storages based on granular phase change materials: Advantages and applicability. Journal of Energy Storage, 65 p. 107294. doi: 10.1016/j.est.2023.107294
[11] Tan, F.L., Hasseinizadeh, S.F., Khodadadi, J.M. and Fan, L., 2009. Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule. International Journal of Heat and Mass Transfer, 52, pp. 3464-3472. doi: 10.1016/j.ijheatmasstransfer.2009.02.043
[12] Tewari, K., Pandey, S.K., Athawale, V. and Bhattacharya, A., 2023. Effect of internal channels on energy storage in macro-encapsulated phase change material. Thermal Science and Engineering Progress, 44, p. 102045. doi: 10.1016/j.tsep.2023.102045
[13] Kothari, R., Hemmingsen, C.S., Voigt, N.V., La Seta, A., Nielsen, K.K., Desai, N.B., Vijayan A. and Haglind F., 2024. Numerical and experimental analysis of instability in high temperature packed-bed rock thermal energy storage systems. Applied Energy, 358, p. 122535. doi: 10.1016/j.apenergy.2023.122535
[14] Kern, C. and Jess, A., 2022. Design of Unsteady-State Fixed-Bed Processes for Heat Regeneration, Ad-/Desorption, and Gas-Solid Reactions. Chemical Engineering & Technology, 45, pp. 2015-2029. doi: 10.1002/ceat.202200269
[15] Zuo, H., Zeng, K., Zhong, D., Li, J., Xu, H., Lu, Y., Yu, Y., Yang, H. and Chen, H., 2024. Parameter analysis and optimization of multi-dimensional packed bed shrinkage model developed by phase field method for solar gasification of biomass. Fuel, 367 p. 131174. doi: 10.1016/j.fuel.2024.131174
[16] Aerov, M.E, Todes, O.M. and Narinskii, D.A., 1979. Stationary granular beds: hydraulics and heat transfer. Leningrad: Chemistry Publishing.
[17] Pleshanov, A.S., 1988. Phase transition kinetics in the presence of joulean dissipation. J Appl Mech Tech Phys, 29, pp. 625–630. doi: 10.1007/BF00857904
[18] Crepeau, J.C., Siahpush, A. and Spotten, B., 2009. On the Stefan problem with volumetric energy generation. Heat and Mass Transfer, 46, p. 119. doi: 10.1007/s00231-009-0550-5
[19] Alsulami, R.A., Zope, T.M., Premnath, K. and Aljaghtham, M., 2023. Convectively cooled solidification in phase change materials in different configurations subject to internal heat generation: Quasi-steady analysis. Applied Thermal Engineering, 221, p. 119849. doi: 10.1016/j.applthermaleng.2022.119849
[20] Diani, A. and Campanale M., 2019. Transient melting of paraffin waxes embedded in aluminum foams: Experimental results and modeling. International Journal of Thermal Sciences, 144, pp. 119-128. doi: 10.1016/j.ijthermalsci.2019.06.004
[21] Diani, A. and Rossetto, L., 2021. Melting of PCMs Embedded in Copper Foams: An Experimental Study. Materials, 14, p. 1195. doi: 10.3390/ma14051195
[22] Zhang, X., Su, G., Lin, J., Liu, A., Wang, C. and Zhuang Y., 2021. Three-dimensional numerical investigation on melting performance of phase change material composited with copper foam in local thermal non-equilibrium containing an internal heater. International Journal of Heat and Mass Transfer, 170, p. 121021. doi: 10.1016/j.ijheatmasstransfer.2021.121021
[23] Gibout, S., Franquet, E., Marechal, W. and Dumas, J.-P., 2013. On the use of a reduced model for the simulation of melting of solutions in DSC experiments. Thermochimica Acta, 566, pp. 118-123. doi: 10.1016/j.tca.2013.04.023
[24] Rocha, T.T.M., Trevizoli, P.V. and de Oliveira, R.N., 2023. A timeline of the phase-change problem for latent thermal energy storage systems: A review of theoretical approaches from the 1970-s to 2022. Solar Energy, 250, pp. 248-284. doi: 10.1016/j.solener.2022.12.035
[25] Luikov, A.V., 1968. Analytical heat diffusion theory. New York: Academic Press.
[26] Bykov, V.I. and Tsybenova, S.B., 2010. Convexity and convexity margin of thermodynamic functions. Dokl Phys Chem, 431, p. 48–51. doi: 10.1134/S0012501610030024
[27] Nicolis, G. and Prigogine, I., 1977. Self-organization in nonequilibrium systems. From dissipative structures to order through fluctuations. NY: Wiley-Interscience.
[28] Vulis, L.A., 1961. Thermal regimes of combustion. NY: McGraw-Hill.
[29] Wilke, S., Schweitzer, B., Khateeb, S. and Al-Hallaj, S., 2017. Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: An experimental study. Journal of Power Sources, 340, pp. 51-59. doi: 10.1016/j.jpowsour.2016.11.018
[30] Diaconu, B., Cruceru, M. and Anghelescu, L., 2023. Fire Retardance Methods and Materials for Phase Change Materials: Performance, Integration Methods, and Applications—A Literature Review. Fire, 6, p. 175. doi: 10.3390/fire6050175
[31] Mohammed, H.I., Talebizadehsardari, P., Mahdi, J.M., Arshad, A., Sciacovelli, A. and Giddings, D., 2020. Improved melting of latent heat storage via porous medium and uniform Joule heat generation. Journal of Energy Storage, 31, p. 101747. doi: 10.1016/j.est.2020.101747
[32] Aljabair, S., Alesbe, I. and Ibrahim, S.H., 2023. Review on latent thermal energy storage using phase change material. Journal of Thermal Engineering, 9, pp. 247-256. doi: 10.18186/thermal.1245298
[33] Donskoy, I.G., Kozlov, A.N., Penzik, M.V., Svishchev, D.A. and Ding, L., 2024. Agglomeration of coal and polyethylene mixtures during fixed-bed co-gasification. International Journal of Coal Science & Technology, 11, p. 21. doi: 10.1007/s40789-024-00670-4
[34] Bykov, V.I. and Tsybenova, S.B., 2009. Dynamics of first-order phase transitions. Dokl Phys Chem, 429, pp. 233–236. doi: 10.1134/S0012501609110050
[35] Bronfenbrener, L. and Korin, E., 1997. Kinetic model for crystallization in porous media. International Journal of Heat and Mass Transfer, 40, pp. 1053-1059. doi: 10.1016/0017-9310(96)00170-6
[36] Kearns, D.A. and Plumb, O.A., 1995. Direct Contact Melting of a Packed Bed. Journal of Heat Transfer, 117, pp. 452-457. doi: 10.1115/1.2822543